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SUMMARY

Particle-spring systems are well-known in computer science for creating physical simulations. In this paper,
we propose the use of particle-spring systems for finding structural forms composing only axial forces. The
equilibrium position of each particle is found using a Runge-Kutta solver, which allows the user to interact
with the simulation while it is running. Several examples illustrate the technique, beginning with two-
dimensional funicular forms and extending to three-dimensional networks. The paper proposes a novel
three-dimensional design and analysis tool, which can be used by engineers and architects to find structural
forms in real time.

Key words: Form finding, hanging model experiments, tension structures, funicular form, grid shells

1. INTRODUCTION

Structural form finding is a classical problem for
long-span roof systems and lightweight structures.
The methods of dynamic relaxation [1] and force
density [2] have been used for decades in form
finding of fabric roof systems and grid shells.
Generally, these solution procedures are useful for
finding the equilibrium position of a structural
network with a desired level of internal force, as in
the case of a pre-stressed membrane structure.
Though such methods are highly developed for pre-
stressed systems, conventional form finding
methods are not very suitable for finding the form
of statically determinate structures which act in
pure tension or compression under their self weight,
as in the case of a network of hanging chains.
Conventional finite element methods are also
unsuitable for modeling a network of hanging
chains, because the large displacements involved
cause numerical instabilities and violate the
necessary assumptions of small displacements.
More recently, optimization techniques using finite
element methods have illustrated great potential for
refining a structural form to minimize bending [3].
This method allows the designer to begin with an

inefficient form, such as a non-structural shape for a
concrete shell, and then search for a more efficient
form by minimizing local bending stresses. In short,
there are many analysis tools for refining forms, but
there are few design tools for exploring and creating
new structural forms.

Many designers have experimented with hanging
chain models and other physical methods for
finding efficient structural forms acting in pure
tension or pure compression. For over 40 years,
Heinz Isler has promoted the use of physical models
as the most appropriate method to discover three-
dimensional forms [4][5][6]. Similarly, Frei Otto
and his colleagues in Stuttgart have developed
highly accurate physical experiments for finding
structural form [7]. In the early 20th century, Antoní
Gaudi employed hanging models in the form-
finding processes for the chapel of the Colonia
Guell [8] and the arches of the Casa Mila [9]. Such
hanging forms are often called funicular derived
from the Latin word funiculus, meaning thin cord or
rope, because they represent the shape taken by a
thin cord acting in pure tension under a given set of
loads. As Robert Hooke recognized in the 17th

century, such tension forms could be inverted to
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find the shape of structural forms acting in pure
compression under the same loading. Heyman [10]
has translated Hooke’s theorem from Latin: “As
hangs the flexible line, so but inverted will stand the
rigid arch.”

By using a chain of axial springs which do not
allow bending, it is possible to model hanging
cables under various loading conditions in real time.
Consider the example of two masses, m and 3m,
which are hanging from three weightless springs, as
in Figure 1. For particular values of spring length,
spring stiffness, and mass, there will be one stable
equilibrium position for this system. Reducing the
length or increasing the stiffness of the springs will
alter the equilibrium position so that the “sag” at the
center is reduced. Similarly, increasing the length of
the springs or reducing the spring stiffness will
cause greater sag in the system and will produce an
alternative equilibrium configuration. By varying
the length or stiffness of each spring, it is possible
to generate an infinite number of equilibrium
positions which belong to the family of funicular
forms for a given loading configuration. In the
context of graphic statics, this is equivalent to
moving the pole to a new location to create a
different funicular polygon [11].

Figure 1. Equilibrium of simple particle spring
system

This paper presents a novel approach for the
exploration of funicular forms. Particle-spring
systems serve as an excellent approximation for
hanging models, by using axial springs connecting
lumped masses to represent the physical behavior of
weights hanging on strings. The equilibrium
position of each mass is found using an iterative

Runge-Kutta solver proposed by Baraff and Witkin
[12]. Such methods are well-known in the computer
graphics community, where researchers have
developed efficient algorithms for solving large
networks of particles connected by elastic springs.
Particle-spring systems have been used extensively
in cloth simulations and other graphics problems,
particularly for making realistic simulations for the
animation of clothing and other fabrics. After a
brief description of the particle-spring method, two-
dimensional and three-dimensional funicular forms
will be derived using the method. Finally,
advantages and disadvantages for the method are
presented.

2. PARTICLE-SPRING SYSTEMS

Particle-spring systems are based on lumped
masses, called particles, which are connected by
linear elastic springs. Each spring is assigned a
constant axial stiffness, an initial length, and a
damping coefficient. Springs generate a force when
displaced from their rest length. External forces can
be applied to the particles, as in the case of
gravitational acceleration. To solve for the
equilibrium geometry of particle-spring systems,
there are many techniques with varying degrees of
efficiency and stability. The two primary classes of
solution procedures are implicit and explicit
solvers. For solving structural models, implicit
solvers are more useful because of the high spring
stiffness used in the models to minimize distortion
of the initial spring lengths. With high spring
constants, the small changes in the length of each
element do not converge to an answer when using
an explicit solver, making an implicit solver more
preferable [13]. The implementation used here is
based on an implicit Runge-Kutta solver, which
aims to find the equilibrium position of each
particle. The solver is part of a particle-spring
system implemented for the Processing
environment by Simon Greenwold [14]. The
programming environment uses Java, which allows
the method to be made freely available on the
internet.

Each particle in the system has a position, a
velocity, and a variable mass, as well as a
summarized vector for all the forces acting on it. A
force in the particle-spring system can be applied to
a particle based on the force vector‘s direction and
magnitude. Alternatively the magnitude of the force
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can be calculated using a function as in the case of
springs. Springs are mass-less connectors between
two particles that exercise a force on the particles
based on the spring’s offset from its rest length.
Particles can be restrained in any dimension, so it is
straightforward to add supports by restraining the
displacement vectors of an individual particle.

The particle-spring system is usually not in
equilibrium when the simulation is started and there
will be movement throughout the system as the
particles and springs seek their equilibrium
positions. For the simulations presented here, each
particle is assigned a mass and a gravitational field
is applied to the entire system. Thus, the particles
fall due to gravity either until the forces in the
system reach equilibrium or the simulation is
terminated. To prevent oscillations of the particles
about their equilibrium positions, it is necessary to
apply damping to the system. Damping can be
applied as a coefficient to each spring.
Alternatively, each particle can be subjected to
viscosity in the surrounding environment as another
damping method.

Eventually the system comes to an equilibrium
state, if one exists. Even when the system no longer
appears to move, the solver never stops as the
system continues to update and refine the position
of each particle. To stop the simulation, the user can
define a limit, such as the velocity or the change in
position of each particle as a cutoff threshold for the
simulation. Papers by Baraff provide greater details
on the solution procedure, including computer code
for implementation [12][13].

Figure 2 illustrates the solution procedure for a
series of springs supporting 40 masses at equal
spacing, which approximates the form of a hanging
chain. The particles are initially placed in a single
line connected by springs with the outer two
particles acting as fixed supports. As the simulation
begins (t=0.5 seconds), the line of particles begins
to fall. At t=2.0 seconds, the particles near the
supports are approaching their equilibrium positions
while the particles near the center continue to fall
vertically. The solution at t=3.0 seconds begins to
approximate a catenary, as will be discussed in
more detail later. One of the primary attractions of
the particle-spring approach is that it allows the user
to watch the system approach equilibrium and to
intervene during the solution process. The user can
alter the applied loading, add or subtract structural

elements, and change the support conditions in
order to discover new structural forms while the
simulation is running.

Figure 2. Solution process for a cable with forty
discrete masses at equal spacing.

3. TWO-DIMENSIONAL SYSTEMS

For two-dimensional systems, unique funicular
forms exist for given loadings and support
conditions, as in the case of a catenary formed by a
cable of given length hanging under its own weight.
Such forms depend only on the length of each
element and the applied loading, so that a unique
solution exists. Combinations of hanging chains
will create more complex funicular forms as in
Figure 3, which is achieved by adding “chains” of
closely spaced particles with uniform masses.
Provided that each intersection has only three
springs attached, the system is statically
determinate and the funicular form is unique.

Figure 3. Statically determinate funicular form in
2D modeled with particle-spring simulations
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Particle spring systems can be used to effectively
model both statically determinate and indeterminate
systems. For indeterminate systems, it is possible to
develop compression struts which are equilibrated
by tension elements and the axial spring model can
account for these scenarios as well. Figure 4
illustrates the simplest example of an indeterminate
two-dimensional system, a point load supported by
three weightless bar elements with pinned
connections. In this case, the force in each element
varies with its length and axial stiffness and the
exact value of force in each element can vary
drastically with small changes in the geometry. The
accompanying force polygon in Figure 4 uses
graphic statics and Bow’s notation to illustrate the
internal forces in each element of the structure, such
that vector ab on the force polygon is equivalent to
the magnitude of the applied load AB [11]. The
perfect elastic solution gives the greatest force in
element CD and the smallest force in element AD,
with tension in all three elements, as shown by the
force polygon.

Figure 4. Statically indeterminate funicular system
in 2D with the corresponding force polygon.

Many other equilibrium states are possible for this
structural system, with each element acting as a
tension, compression, or zero-force member. For
example, if the length of member CD is longer than
the prescribed length, it must be forced into
position, causing a state of self-stress in the
structure. In this case, a new equilibrium state will
occur with element CD in compression and with
increased tension in elements BC and AD. This
state of self-stress is illustrated by the alternative
force polygon showing the corresponding location
of c’d’ in Figure 4. There are an infinite number of
valid equilibrium states for this structure, all of
which can be illustrated with graphic statics, and
can be effectively modeled with particle spring
systems. However, for spring elements acting in
compression, the solution procedure does not

account for buckling, which must be implemented
as an additional consideration.

4. THREE-DIMENSIONAL FUNICULAR
SYSTEMS

If one considers the term funicular to mean
“tension-only” or “compression-only” for a given
loading, then it is also appropriate to identify three
dimensional systems as funicular. Three
dimensional funicular systems are considerably
more complex because of the multiple load paths
which are possible. Unlike the case of a hanging
cable with a single funicular form, hanging
membranes have multiple possible forms.

As an example, Figure 5 illustrates two continuous
surfaces supported on a circular base: a cone and a
shallow spherical dome. Both forms can contain
compression-only solutions according to the
membrane theory under an applied load of gravity
[15][16][17]. Therefore, for statically indeterminate
networks of intersecting elements, there is no such
thing as a unique funicular solution. Each solution
will depend on the exact length of each element.

Figure 5. Examples of 3D membrane systems
which can act in pure compression.

This fact is well-known to designers who seek
three-dimensional funicular forms through
experimentation. For example, Heinz Isler varies
the amount of fabric in his hanging membrane
models in order to alter the shape of the final design
[5]. Simply by changing the length of each element,
new equilibrium solutions are possible. For three
dimensional networks, a spherical dome can
become a conical shell by adjusting the length of
each element. Both belong to the family of valid
solutions for compression-only networks acting
under their own weight. Of course some solutions
perform better under varying load conditions and
the double curvature of the dome is structurally
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superior to the single curvature of the cone in the
event of asymmetrical live loading.

5. DESIGN EXAMPLES

To illustrate the potential for structural form finding
with particle spring systems, four examples will be
presented: a catenary, a square mesh, a 3-D
cathedral structure, and a free-form grid shell.

Example #1: A catenary of length, L, is modeled by
seven masses distributed initially at equal spacing
along spring segments. As illustrated in Figure 6,
the particle-spring solution varies only slightly from
the theoretical catenary solution because of linear
approximations of the particle spring solution.
Though the solution from the particle spring model
is not an exact catenary, it is a valid equilibrium
solution for a hanging chain with equal weights
distributed at slightly uneven spacing along the
chain. It is not an exact catenary because the length
of each spring segment is slightly different due to
the varying internal forces. The difference between
the nodes of the particle spring system is given as a
percentage of the maximum sag of the catenary. In
all cases, the particle spring solution varies by less
than 0.01% of the sag of the cable.

Figure 6. Comparison between theoretical and
computational solutions for the catenary

Example #2: A rectangular grid mesh with 25
squares in each direction is restrained at four nodes
near each corner. Each intersection of the mesh is
assigned an equal mass and the particle-spring
network is subjected to gravitational forces, causing
it to form a dome-like structure. Figure 7 illustrates
the solution procedure and the final equilibrium
state of the shell. The hanging structure has been
inverted to demonstrate the form of a compression
shell. Each support is located four squares from the
nearest edge, so that the resulting structure has

upturned edges to stiffen the shell against buckling
and asymmetrical loading. Because the interior
particles in this mesh are connected to four springs,
the system is statically indeterminate and the
solution illustrated in Figure 7 contains both tension
and compression elements. In general, the particle
spring system gives solutions with upturned edges
when the area of the surface lies outside the support
points, as in the case of Isler’s shells with upturned
edges.

Figure 7. Simple square mesh supported near the
corners

Example #3: A skeletal cathedral structure, similar
to forms designed by Catalan architect Antoní
Gaudi, is created from intersecting elements. The
mass is lumped at a series of nodes, which are
spaced evenly along each line element. Figure 8
provides a view through the central nave of such a
structure. The building geometry is only
represented by lines of force and not as meshes or
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surfaces. For simplicity, four bays of two-
dimensional transverse arches are represented,
though it is straightforward to add intersecting
arches between each bay to create a fully three-
dimensional structure. It is also straightforward to
add additional arches and towers to this virtual
model in the same manner that Gaudi experimented
with physical hanging models. Using the particle
spring approach, a three-dimensional structure such
as this cathedral can be created in only a few
minutes, whereas Gaudi developed his physical
models over many years. In addition to its merits as
a design tool, this method can also be used as an
interactive analysis tool for historic masonry
structures such as Gothic cathedrals, in which
particle-spring systems can be used to represent
thrust lines or thrust surfaces acting within the mass
of the masonry.

Example #4: A grid shell is created with irregular
support locations, as illustrated in Figure 9. A
regular grid mesh is supported multiple times in
addition to its corner attachment points. As before,
each intersection of the mesh is assigned a mass and
the structure deforms according to the applied
gravity. This is an example of a more free form
design exploration in which the user experiments
with various support conditions. As with the square
grid of example #2, this shell is statically
indeterminate and the solution illustrated contains
elements acting in both tension and compression.

6. DISCUSSION

Finding structural form using particle-spring
systems has a number of advantages. Most
importantly, the user can change form and forces in
real time while the solution is still emerging. The
environment educates the user as to the effects of
forces on the form of structures and provides an
interactive form-finding environment that was
previously limited to physical models. By nature of
the solution procedure, the particle-spring system
always finds a possible load path for which the
forces are in equilibrium. If no equilibrium solution
exists, as in the case of an unsupported structure,
then the masses will continue to translate in space
until the user intervenes. The primary improvement
over existing finite element methods is that this
environment is fully dynamic, allowing the accurate
computation of large displacements, velocities, and
accelerations for the design of structural systems.

The improvement over existing relaxation methods
is that the design environment is fully interactive
and dynamic, allowing the user to invent forms
rather than analyzing existing forms.

Figure 8. Cathedral structure

Figure 9. Free-form grid shell

Particle-spring systems can help to introduce
structural evaluation environments into the
architectural design process as early as possible,
allowing the designer to interact with a form and to
experiment with alternative solutions. The goal is to
increase intuitive understanding for structural
behavior of complex forms at the early design
stage. The addition of some file export capabilities
allows for the exchange of data with other
applications so that models created in the particle-
spring environment can be exported to more
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conventional design environments, such as CAD
and standard finite element programs. This
methodology can allow architects and engineers to
explore forms with a structural basis in the same
manner that some designers have used physical
models in the past.

A number of disadvantages exist at present. Due to
the properties of axial springs they not only contract
upon being stretched but also expand upon being
compressed. This creates the possibility of tension
and compression members being present in a
hanging structure at the same time. There are
several remedies for this problem, such as removing
the compression members in order to guarantee
tension-only solutions. Another solution is to
dynamically subdivide the compression member
into two springs, which renders the springs
incapable of taking compression forces and
provides a tension-only solution. Additionally, the
choice of an appropriate mesh pattern can allow for
statically indeterminate systems, such that each
particle is attached to three springs or fewer for
three dimensional structures.

The solution procedures are somewhat expensive
computationally, which limits the size of real-time
simulation at this point. Current solutions are
practical for solving up to 1,000 particles in real
time on a desktop computer. Also, as exemplified in
the case of the catenary, there is a slight loss of
precision due to the approximation of the
simulation. Using the system to model actual
project geometry has its own challenges. The
process is not static but the addition of string
elements is dynamic (depending on the solver used)
so that the shape and form is constantly in flux. The
final equilibrium shape emerges from the modeled
topology. As in the case of a physical hanging
model, any addition disturbs the balance of the
initial shape. Finally, another disadvantage is that
for very complex problems in combination some
solutions can become unstable. In general, the
solution procedure is quite robust.

7. CONCLUSIONS

Particle spring systems provide a powerful new
method for structural form-finding in a design
context. The solutions allow large displacements
and are valid beyond the realm of conventional
finite element formulations, which assume small

displacements. This method allows for real-time
discovery of structural form rather than analysis or
optimization of an existing form. Form finding
processes at the design stage of the process make
the designer aware of structural responses. This
application represents an extension of particle
spring systems beyond their initial role in character
animation and cloth simulation within computer
graphics.

There is significant future work to be done for this
method to become a standard approach in structural
form finding. Solutions without distortions of the
original geometry can be accomplished by updating
the length of each element to maintain its initial
length. Additionally, various structural elements
can be modeled with the particle-spring system,
including trusses, slabs, beams, and rigid elements,
which would allow users to explore a much wider
range of structural forms. Future work will also
address the question of different degrees of
optimization. In the current model, the equilibrium
form is not always optimal within the chosen
topology and designers may wish to experiment
with alternative solutions to achieve greater or
lower efficiency. Designers may choose a less
optimal structural form in order to accommodate
other design constraints. Because design always
mediates between many goals and hardly ever fits
one of them perfectly, users should be able to
diverge from the optimal structural solution to
achieve greater design flexibility.
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