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Abstract
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Today digital models for design exploration are not used to 
their full potential. The research efforts in the past decades have 
placed geometric design representations firmly at the center of 
digital design environments. In this thesis it is argued that models 
for design exploration that bridge different representation aid 
in the discovery of novel designs. Replacing commonly used 
analytical, uni-directional models for linking representations, with 
bidirectional ones, further supports design exploration. The key 
benefit of bidirectional models is the ability to swap the role of 
driver and driven in the exploration. 
The thesis developed around a set of design experiments that 
tested the integration of bidirectional computational models 
in domain specific designs. From the experiments three main 
exploration types emerged. They are: branching explorations 
for establishing constraints for an undefined design problem; 
illustrated in the design of a concept car. Circular explorations for 
the refinement of constraint relationships; illustrated in the design 
of a chair. Parallel explorations for exercising well-understood 
constraints; illustrated in a form finding model in architecture.  A 
key contribution of the thesis is the novel use of constraint diagrams 
developed to construct design explorers for the experiments. The 
diagrams show the importance of translations between design 
representations in establishing design drivers from the set of 
constraints.  The incomplete mapping of design features across 
different representations requires the redescription of the design 
for each translation. This redescription is a key aspect of exploration 
and supports design innovation.
Finally, this thesis argues that the development of design specific 
design explorers favors a shift in software design away from 
monolithic, integrated software environments and towards open 
software platforms that support user development.
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Method:
Experiments in design exploration

Themes :
Simulation Surface System Search

Key terms:
Constraint:
A condition where one entity enforces a state onto another

Design Driver:
A constraint with the most weight in a design exploration and therefore the 
most influence

Bidirectional Links:
A relation between two entities in which the role of driver and driven can switch

Design Exploration:
Variation of design solutions and goals to ultimately reach a better design 
solution 

Design Explorer:
A physical or computational construct that combines design representations 
and constraints in order to support design exploration within the defined 
conditions

Types of Explorations: 
Circular, Branching, and Parallel
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The three different types of 
explorations tested in the 
experiments.

Material constraints
Chair

Function constraints
Concept car

Topology  constraints
Hanging model

Circular Branching Parallel

1	 Introduction
This thesis explores the hypothesis that constraints can play the role 
of design drivers in design exploration. The thesis has developed out 
of a series of design experiments situated in a number of different 
design domains as a means to emphasize the general applicability 
of the approaches across design disciplines.
The author claims that significant design innovations occur in 
the translation between individual design representations, and 
that design exploration cannot be confined to a singular design 
representations. Furthermore, the author challenges the dominant 
role of geometry as the sole design representation at the center 
of digital design software. The specific experiments diagram 
the general design exploration from three separate domains 
and test the hypothesis from a design centered point of view. A 
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key contribution of the thesis is the development of constraint 
diagrams for design explorations based on a network of constraints 
and design representations. 

1.1	 Design Exploration through Constraints
Design can be described as a process of emergence and discovery 
resulting from the definition of the constraints, their relationships, 

and the design problem. The constraints that form the boundaries 
of the problem can also serve as design drivers for possible design 
solutions. Understanding the constellation of constraints is crucial, 
and it goes hand in hand with the creation of design solutions.   
Every design move creates additional constraints and consequently 
triggers contextual responses. 

1.1.1	 Constraints as design drivers
Constraints are generally viewed as limiting factors in design. 
But there is evidence in research (Burrow and Woodbury 1999) 
(Krzysztof 2003) (Gross 1985) and architectural practice (Shelden 
2002) (Schlaich 2005) that constraints can trigger the development 
of innovative design solutions and are a powerful way to drive 

A screenshot of an interactive vector 
cloud that responds to the point of 
attention of a viewer. Every action 
changes the overall and the local area,  
resultant in a fluid but not goal driven 
interaction that evokes emergent 
visual constructs.
Master of Science thesis (2000), Axel 
Kilian.
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solution space.
Constraints can help to focus design exploration through 
formulating the boundaries of available resources. There are various 
types of constraints that can be applied to a range of aspects of 
the design problem. While constraints may initially prove to be a 
limitation, over the course of the design process they can evolve 
to become a driver for innovative design solutions. The first step to 
aid this transition is to externalize the constraints.

1.1.2	 Types of constraints 
The main constraints used in the experiments are:
•	 Material: Constraints related to fabrication and material parameters
•	 Functional: Constraints related to different functional requirements in 

design definition
•	 Topologic: Constraints related to geometric variations  without 

changing topologies
•	 Geometric: Constraints related to dimensional and relational aspects of 

geometric models
A design explorer is the assembly of constraints that apply to the 
design problem. The experiments all share such design explorers. 
The constraints are modeled both implicitly and explicitly. Constraint 
solvers allow for the explicit modeling of constraints, such as 
demonstrated in the form finding experiments of the hanging 
model. Implicit constraints are for instance, modeled through the 
choice of, geometric primitives that have the constraint embedded 
in their given properties.

1.1.3	 Externalizing the constraints
Externalizing the constraints is a necessary step in constructing 
a design explorer. The analysis of the design problem through 
diagrams provides the dependency network between the 
constraints. In the next step of constructing the exploration 
framework, the constraints are translated into appropriate design 
representations. Finally, physical or digital implementation choices 
are made to complete the design explorer. 
This network of representations goes beyond the clean 
homogenous digital geometric representation of today’s CAD 
environments and can potentially integrate all design relevant 
forms of representation. 
Antonio Gaudi’s physical hanging models are examples of an 
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externalized constraint explorer. The physical embodiment of the 
form-finding model ensures certain robustness as a simulation 
tool. At the same time, the physical nature of the models also limits 
the exploration due to time, cost, and conceptual restrictions. A 
digital hanging model, in contrast, extends the physical model by 
calculating structural member cross sections in a wireframe model 
based on forces present. It enriches the exploration by giving direct 
feedback.
As a central question this thesis asks whether design exploration 
can generally benefit from the cross referential interfacing of digital 
and physical design explorers. 

1.2	 The Experiments
The goal of the experiments conducted in this dissertation was 
to test computational methods for their potential to support 
different design exploration approaches related to constraints. 
The author combined and extended existing computational 
models from computer science, computer graphics and structural 
engineering in the experiments. In addition, the experiments test 
the integration of design drivers that traditionally have not been 
considered part of the design process, but are typically considered 
conventions of implementation. For instance languages have 
developed around common building materials such as brick or 
steel, that have, over time, become design conventions. Design 
conventions are powerful as long as they are applied in the context 
in which they were developed in. With the shifts in architectural 
forms and program many of the traditional building conventions 
need to be adjusted or even be reinvented partially to fit the new 
application context. 
The experiments range a chair design integrating material and 
fabrication constraints to particle spring system for form finding to 
the physical prototyping of functional, constraint-driven designs. 
The three major experiments in the thesis were:
•	 The chair experiments
•	 The concept car experiments
•	 The hanging model experiments
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1.2.1	 The chair – surface and material
The chair design experiment at the core of the circular exploration 
experiment section makes use of a parametric CAD model 
to integrate and mediate the influence from different design 
representations and constraints. The experiments sought to 
correlate material and geometry in curved, surface based forms, 
and identify how material constraints could be implemented 

through geometry. The initial set of experiments, leading up to 
the chair design, served to gather knowledge of the constraints 
in material and double curvature surfaces. Those constraints were 
then combined in the main design experiment, which focused on 
the design of the chair, to refine the geometric design goal while 
conforming to the constraints of fabrication, curvature and part 
assemblies.

1.2.2	 The concept car – function and design
The concept car experiment at the core of the second experiment 
section used a host of computational processes primarily focused 
on establishing the constraints necessary to define a novel car 
architecture referred to as the H-series. Among them were three 
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dimensional constraint solvers, rigid body simulation models, 
parametric models and micro controller driven physical servo 
models. 
Preliminary experiments involved functional constraint models 
and rule based explorations. Overall, the experiments used digital, 
conceptual and physical exploration techniques for the definition 
of a design task. The experiments were conducted as contribution 
to and   in collaboration with, other members of the concept car 
design workshops and members of the smart cities group headed 
by William J. Mitchell.

1.2.3	 The hanging model – form and forces
The hanging model experiment constitutes the core of the third 
experiment section which uses a particle spring system from 
computer graphics for implementing a digital version of a hanging 
model in force equilibrium. Preliminary experiments focused on 
the extension of the pure hanging model through the integration 
of the additional constraints of material properties. The geometry 
of a design emerges from a particle spring model that embodies 
the constraints of a physical hanging model. The particle spring 
models were initially developed with Megan Galbraighth and 
Dan Chak using a Particle Spring library by Simon Greenwold for 
a computer graphics class and further developed in a series of 
workshops co-instructed by John Ochsendorf, the author, Barbara 
Cutler, Simon Greenwold, Eric Demaine, and Marty Demaine.

1.3	 Thesis Statement and Themes
Design exploration is a powerful process crossing design domains 
for solving highly constrained design problems, for refining 
existing design solutions, and for defining entirely new design 
problems. Modeling design explorers both digitally and physically 
can significantly help the design process and extend the range of 
solutions. The experiments in this thesis are exploited as a means 
to explicitly demonstrate the ways in which design innovation 
can happen at different points during exploration. It can be the 
innovation of a novel design from the interlinking of constraints. 
It can be innovation from the refinement of a design from known 
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constraints, or the emergence of a novel design from exercising of 
a fully implemented constraint network.

1.3.1	 Constraints in design exploration
The first key aspect of design exploration is the integration of 
constraints into the design explorer. A design explorer is defined 
by the translation of constraints into representations and 

implementations. A design explorer is the assembly of constraints 
that apply to the design problem. Constraints become drivers 
of the design exploration process. Different domains are linked 
among each other. Every choice influences the overall exploration 
and possible designs. The mechanics of these cross dependencies 
between constraints, representations and implementations are 
best illustrated in detail in the chair experiment.

1.3.2	 Bidirectionality in design exploration
The second key aspect of design exploration is the bidirectional 
nature of the computational models used. Most digital 
implementations for design evaluation are based on analytical 
principles that allow a one-directional link between one design 
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representation and another. For instance, most rendering 
programs provide a way to analyze lighting conditions based on a 
given geometry, but only very few research projects (Schoeneman 
1993) (Mahdavi 1997) allow the reversal of the process to derive 
a possible light source from a given light situation. This has to do 
with the non-deterministic nature of reverse mapping, as there are 
infinitely many possible solutions even for the simplest condition. 
If the relationship between driver and driven is more closely 
defined, however, it becomes possible to also obtain meaningful 
results from reversing the process. In the remainder of the thesis, 
this ability to reverse the link between design representations will 
be referred to as bidirectionality. 
Bidirectional design exploration, then, is a domain independent part 
of the design process. It can be enhanced through computational 
and physical constructs, so-called design explorers. By adding 
bidirectional properties to the translation between different design 
representations, design exploration can support even complex 
constraint dependencies. As a result, novel designs can emerge by 
discovery.

1.3.3	 Conceptual building blocks
The thesis introduces four major themes as the conceptual building 
blocks of digital design based on the historic and conceptual 
development of the field.
The four major themes of the thesis are:
•	 Simulation
•	 Surface
•	 System 
•	 Search
The themes are developed in order to introduce both the vocabulary 
and the concepts that reoccur in the field of digital computation. 
Of course there are many more themes such as recursion and 
parameterization, yet most of these terms fall in some form or 
another within the categories of simulation or systems in general. 
The themes listed here are a reflection of the experience of the 
author in the appropriation of the field and its history and it is not 
intended to serve as an inclusive perspective of computation as a 
whole.
Excellent accounts of the history of the development of 
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computational sub fields such as computer aided geometric 
design, computer graphics, and histories of modern computing 
currently exist that provide a more complete overview of the 
developments, (Farin 2001) (Ceruzzi 1998). The significance of the 
simulation, surface, system and search is their influence on each 
other and on the emergent field of computation, especially on its 
digital design implementations. Many of the frustrations of digital 
design can be traced back to choices and limitations in early digital 
design systems.

1.3.4	 Choices of abstraction 
The mind of an architect or designer is trained to be receptive to the 
contextual shifts and cross-dependencies that drive the creative 
process. Abstraction plays a crucial role in reducing complexity in 
a meaningful way so that it becomes possible for the designer to 
process and interact with the evolving problem. But abstraction can 
be counter productive in those design problems that rely on the 
interdependency of multiple design constraints. In fact, abstraction 
might compromise some particular features critical to design. 
Where the constraint relationships rely on precise, computationally 
intensive dependencies, a digital implementation has advantages 
over an abstracted one. This is where digital models can make a 
difference in design exploration. They can help to overcome the 
complexity barrier in design problems that can only be explored 
further by taking into account all cross dependencies and that would 
suffer from a loss design relevant features through abstraction.
Computation can aid in the discovery of design solutions by 
modeling the constraints and the design representation into design 
explorers. Design explorers offer an alternative form of abstraction. 
Through the computationally based externalization of networks 
of dependency relations, design explorers capture and store 
states of the process for the designer to interact with. Through the 
interaction, additional layers of the constructed design model may 
be revealed. This externalized, computational representation offers 
a distinctly separate set of explorations aside from abstraction 
alone. 
Once again, the hanging models can serve as an example. While 
the choice of abstracting a structure into point nodes and string 
connections is useful, the interaction of the entire node system 
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relies on detailed computational simulations. Therefore, the mesh 
abstraction of the hanging model works as it allows for interactive 
design exploration through interaction with the nodes. In contrast, 
abstraction of the precise mesh form would render the result 
useless as it relies on the geometric detail to work structurally. 
The example is a well chosen abstraction for an interactive design 
explorer that offers the chance of discovery of design variation 
within a defined set of constraints.
In summary, abstraction choices are crucial in supporting design 
exploration and have to be carefully chosen to avoid established 
design conventions. In order to maintain the possibility for innovative 
design to occur it is important to create design abstraction from 
first principles and design specific for every design.

1.3.5	 Incremental improvements versus innovation
Design constraints in architectural design are becoming more 
complex in terms of the overlay of functional, aesthetic, and 
performative demands. At the same time, traditionally evolved 
solutions that are localized and long-refined rarely exist for today’s 
building projects. Even where precedents exist, the adaptation 
to new material and production techniques requires explorative 
techniques. With increased complexity, design problems can 
become over constrained, for instance in car or airplane design. 
There is a tendency to then resort to a strategy of incremental 
improvements. This is the result of the pressure of constraints from 
a large number of domains onto the design solution; introducing 
fundamental changes at the implementation level becomes 
virtually impossible. Here conceptual design exploration can 
make a difference. By developing a method for the generation of 
program descriptions driven by functional constraints, conceptual 
design exploration can help to resolve novel design approaches in 
highly constrained domains. In the thesis, the section on concept 
car design experiment (Chapter five) exemplifies this type of 
exploration.

1.3.6	 Constructing expertise
In practice, knowledge of design constraints and how to work with 
them is referred to as expertise. It refers to a depth of knowledge 
that goes beyond convention. Expertise allows novel designs 
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to emerge while drawing on previous experience. Experience is 
accumulated by humans or by organizations and teams, and gets 
formalized into procedures and eventually traditions. 
Is it possible to externalize this expertise and capture it for design 
exploration? In practices such as Foster and Partners, expertise is 
turned into computational procedures. These tools are distributed 
to designers. The embedded expertise ensures, for instance, that 
certain geometrical requirements needed for fabrication are met. 
This sort of capturing expertise in applications or tools has a long 
history, spanning from sets of ship curves all the way to the first 
in-house CAD applications developed by architecture offices for 
their own use and eventually the curve and surface algorithms 
developed by Bezier and Casteljau (Bezier 1966) (Casteljau 1963) The 
problem is the lack of integration between these isolated instances 
of expertise. For exploration purposes, the isolated entities need 
to be able to connect and adapt quickly as the projects change 
course or new demands require different expertise. The disconnect 
between isolated applications is not a new one but reaches all the 
way back to the beginning of CAD systems. (Mitchell 1975) 
Each of the experiments in this thesis connects areas of expertise 
through the design exploration in order to push the design 
forward. The integration of the findings is accomplished through a 
parametric model in the case of the chair, selective prototyping in 
the car experiment, and through a particle spring implementation 
that embodies the structural behavior in the case of the digital 
hanging model.  

1.3.7	 Design exploration in the context of 
computation

In “What is design?” Stiny gives an account of what constitutes 
design from the perspective of architectural design. According to 
Stiny, design is “an element in an n-ary relation among drawings, 
other kinds of descriptions, and correlative devices as needed” 
(Stiny 1990). Design rarely relies on a single type of representation 
or description but rather on a network of geometric and non-
geometric representations. Stiny extended shape grammars by 
introducing such non geometric entities with Weights and label 
algebras (Stiny 1992). Other non-geometric generative rule systems, 
for instance color grammars, were developed for design exploration 
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in parallel to geometry (Knight 1994). Constraints in the context 
of design exploration were addressed earlier in component based 
design explorers (Gross 1985), and more recently in design space 
exploration (Burrow et al. 1999).
Reinhold Martin refers to the role of architecture “…as a node in 
the communication network within and between disciplines and 
regimes of knowledge and production” (Martin 2003).and architects 
as being able to “…lay claim to a function within this web, relating 
to the spatial articulation of the network as such” (Martin 2003).. 
Spatial form is described as a response to an intangible network 
of knowledge and production, and the exploration of translations 
of such networks into built form as being a major question in 
architectural design in the 20th century. (Martin 2003).
In a different context, Norbert Wiener foresaw many critical 
developments related to the problem of exploration and prediction. 
Beginning with the control problem between humans and 
machines in anti-aircraft guns, observed an increasing merging of 
disciplines of mathematics, electrical engineering and others into 
a field he named “Cybernetics”. Cybernetics is based on the Greek 
word for steering (Webster 2005). With this new term, Wiener 
refers to the challenge of balancing goals and feedback within 
the complex systems emerging in the human machine interaction 
at the time (Wiener 1948). The field of Cybernetics is similar to 
design exploration as the interaction between design goals and 
design exploration follow a similar pattern of feedback loops and 
face similar challenges in human-machine interaction. Essentially, 
design exploration could be described as steering the design using 
a “vehicle”, the design explorer, through a solution space, where 
the target of the design coevolves with the explorer, the design 
and the design space itself.
Another inspiration for design exploration is D’Arcy Thompson, 
who in “On Growth and Form” laid the groundwork of relating 
forms found in nature to the diagram of forces that shape them 
(Thompson 1942). Nature is described as one big design explorer 
producing endless variations of species and forms from similar 
building blocks and generative principles. D’Arcy Thompson’s 
model is  fascinating in its descriptions of the emergence of 
beehives  from the connection of material properties, bee behavior, 
and population density and probably more closely related to the 
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work of Wolfram on cellular automata in a “New Kind of Science” 
(Wolfram 2002) than to Darwin’s origin of species, as it explains 
form first and foremost as the result of generative rules on the 
level of chemistry and cell geometry, and only second as result of 
evolutionary selective pressures acting on what can be generated 
in nature. 
This dependency emphasizes the importance of the exploration 
setup in relation to the possible outcomes, as selection can only 
dismiss what can initially be created. For instance, the complexity of 
a sea shell emerges from the intricacy of the growth based process, 
not from a top down design move. In a similar fashion, design 
explorers can aid in projecting the implications of constraints onto 
a design space. But as D’Arcy Thompson explains in great detail 
for the study of eggs, these processes do not rely on geometric 
relationships alone but on a range of shaping processes from 
pressure to material strength and the environment (Thompson 
1942). Architecture responds to a far greater range of influences and 
the complexity can be overwhelming, both in the challenge of how 
to externalize concepts such as space or site and the translation 
of such concepts into design drivers. The right abstraction and 
translation of the core ideas is crucial and often the diagram of 
the design problem may not have a quantifiable implementation. 
However the externalization and mapping into a diagram that 
leads to a design explorer is a crucial step. Alexander summarizes 
the problem of design as: “What does make a design problem in 
the real world cases is that we are trying to make a diagram for 
forces whose field we do not understand.” (Alexander 1964)
An expansion of design representation is necessary as geometry at 
the core of design exploration and generation may be insufficient 
as the vehicle. Geometry will not be substituted in design 
representation, but design exploration needs to move beyond the 
description of form. The power of diagrammatic design descriptions 
needs to be integrated into design exploration as a high level, a pre-
formal design stage, as it offers the most flexibility in early design 
stages. This avenue is explored in the studies of writing devices in 
the experiment chapter.
The most immediate context for this thesis is, of course, the 
prevalence freeform building design in recent years, made possible 
by advances in digital design tools. This widening of the possibilities 
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of built forms should be leveraged to respond to challenges posed 
by material constraints, building performance and aesthetics to 
create new formal and structural possibilities. In this sense, freeform 
buildings may end up representing a larger shift in design, less in 
what meets the eye and more in the general approach to design. 
The approach may be described as digital craft: as the integration 
of experience based parameters into a larger whole, serving as a 
design explorer. Eventually, the potential of freeform may satisfy 
many more constraints than the aesthetic one, as other constraints 
get folded into the exploration of form beyond the conventions 
of today’s buildings. The results may even be similar in shape, but 
just as, for instance, clay shaped like a seashell may conform to the 
original geometrically, but it is likely to falls short on aspects of 
structure, form and aesthetics. 
Design exploration can help to create form in response to and as 
the embodiment of constraints, contextualized in non-geometric 
aspects of design.

1.4	 Precedent Work
The thesis builds on a number of precedents from architecture, 
engineering and computer science that use design explorers 
for cross-domain design. In particular, the thesis draws on the 
graphic static approach; the development of geometric constraint 
systems for construction; models from computer science such as 
Genetic Algorithms; and physical design explorers such as hanging 
models by Antonio Gaudi and Frei Otto. These approaches all allow 
defining and subsequently exercising a constraint network for the 
exploration of design variations with multiple competing goals. 
To date, the precedents of digitally implemented design explorers 
are mostly based in engineering. This has partly to do with the 
quantifiable nature of engineering models, which makes them 
easier to implement in digital medium. In engineering and science, 
significant economic benefits are reaped from the development 
of analytical tools. The case is harder to make for design centered 
design explorers due to the lack of a clear theoretical basis for 
understanding the creative design process. Nonetheless, design 
centered design exploration constitutes an active research field 
involving cognitive science, computation, artificial intelligence 
and the design disciplines. The thesis contributes to this research 
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through a series of experiments and their evaluation.
The precedents and how they relate to this thesis are explained in 
more detail in Chapter two.

1.5	 Results of the Experiments 
Three basic design exploration processes evolved from the 
design experiments in this thesis: a circular approach, a branching 
approach and a parallel approach.
•	 Circular  		  Refining the constraint relationships
•	 Branching		  Establishing constraint relationships
•	 Parallel			   Exercising the constraints
The categories emerged from the experiments, but reflect general 
trends in computation. They help to identify areas of study and 
missing links in the computational design exploration. They are 
also themes prevalent in design practice and education.

1.5.1	 Refining constraint relationships – chair 
experiment

In the circular case, the main goal of the exploration is design 
refinement. Design refinement compares in many respects to 
the tuning of an instrument with the additional challenge of 
circular dependencies. This means that any change in one design 
representation may affect its neighboring representation. This 
can create a feedback loop with the changes rippling through the 
dependency chain. 
A good small example of this codependency is the IPod© music 
player by apple©. If analyzed by features, there is little that 
distinguishes the design from its direct competitors. Its value goes 
beyond the actual product into the perception of the brand, as well 
as supporting services such as iTunes, the online music store. Still, 
as a design refinement challenge, it shows how the exact balancing 
of all features can make a difference. Those differences range from 
design choices to technical details, from materials to user interfaces, 
from pricing to marketing, a complex network of interdependent 
factors that need to be balanced to make a successful product. This 
is already a complex network for a digital music system, and it is 
much more complex for an architectural project. But the challenge 
remains similar no matter what scale the project. The task is to 
identify and prioritize the key design factors in a project.
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Can a digital design explorer – modeling the different design 
factors using appropriate design representations and linking them 
through a constraint network – make a difference? The chair design 
experiment set out to test this question using a much less complex 
set of design features and their corresponding representations. 
The relevance of the experiment is less the end product of the 
chair itself.  Rather, it is the insight gained into a tuning process 
that uses parametric models and digital fabrication in achieving a 
design goal that fulfills all requirements. 

1.5.2	 Establishing constraint relationships – car 
experiments

The most challenging design exploration is the one where the 
design constraints are not known at the start. At the beginning of 
an open ended design project, the role of digital design explorers 
is unclear. With the understanding of the design problem the 
design exploration evolves in parallel. The formation of the design 
problem creates many of the constraints from the emerging 
design features. This back and forth between design features and 
constraints may form and reformulate the design explorer many 
times. The car experiment illustrates this in the dissertation. Many 
of the design exercises aim at the reinvention of the architecture of 
the car without a complete programmatic definition at the starting 
point of the design. This might seem useless and certainly is not 
immediately goal driven. But in fact the openness of the approach 
allows for the emergence of design features that might become 
the building blocks of an emergent goal description. Therefore the 
exploration is aimed at the creation of the design problem itself. 
What models exists to support such a process? There are rule based 
systems such as shape grammars that fulfill the requirement for an 
emergent design goal through the application of the rules that can 
co-evolve along with the exploration of the design.
. In order to overcome the conventions for car design, the exploration 
focused on alternative representation than form. Over the course 
of the experiments different sub component of the established 
car architecture were subjected to design variations in order to 
form the vocabulary for an emergent novel car architecture. The 
components studied by the author were ingress and egress, 
seating, chassis and skin. Some of those explorations developed 



 31

to complete vehicle designs such as the “H-Series” or “Athlete” in 
collaboration with other members of the smart cities group as 
listed in chapter three. 
It became clear that there was no model that encompassed all the 
different exploration criteria or would adapt to the rapid changes in 
concept and object. But a number of digital models proved helpful 
in expanding the exploration where manual or physical based 
design processes would fail. They were: Rigid body libraries for 
driving simulations, parametric models in connection with three 
dimensional constraint solvers for the complex interdependencies 
of the articulated parts and digital fabrication for translating design 
ideas into physical prototypes.  
The concept car experiments were the most complex and time 
intensive of the thesis. The design explorers developed are also the 
least well developed due to the complexity and open-endedness 
of the design exercise.

1.5.3	 Exercising constraints – hanging model 
experiments

The digital hanging experiments suggest that if constraints are well 
understood and their relationships can be defined computationally, 
design exploration benefits greatly from interactive digital tools 
for exploration. In this case the exploration does not address 
the constraints, the design problem or the constellation of the 
constraints but purely the balance between the different design 
drivers. This shifting balance lets novel designs emerge within 
the boundaries of the exploration. This approach is particularly 
useful for complex interactions of constraints such as the hanging 
model where partial abstraction do not render any useful results. 
Here the articulated interactions make the difference between 
an innovative design and one that fails. The digital supported 
exploration makes it possible to keep track of the interactions and 
in addition translate the finding in secondary design features such 
as member dimensions of the hanging structure. The hanging 
model experiment is best described by the term “design by 
discovery”. Design solutions emerge from carefully crafted design 
explorations, design focuses on steering the design constraints 
and monitor the developing results.
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1.5.4	 The experiments in overview
The experiments are heterogeneous and not limited to digital 
models but a mix of design representations both digital and 
physical. The claim is that digital models can help in integrating 
design constraints into design explorers. These design explorers 
can help to improve the design results and also more importantly 
help to access the unused potential of integrated digitally 
enhanced processes such as CNC fabrication. The indication is 
that the changes go beyond the increased efficiency or increased 
complexity of the product and may influence the design process 
itself. One change may be the departure from geometry at the 
center of digital design representation in favor of more integrated 
codependent design representations that might use geometry 
merely as an output

1.6	 Introduction to the Chapters

1.6.1	 Chapter two
In chapter two, the author reviews precedent work that has 
established the concept of design explorers with integrated 
constraints from the fields of structural design, architecture, 
artificial intelligence and computer science.

1.6.2	 Chapter three
Chapter three discusses the conceptual building blocks underlying 
the thesis experiments: simulation, surface, system and search. Each 
concept is analyzed in its relevance to current design practice, and 
accompanied with visual examples. The dependencies between 
the concepts are explained with regard to the experiments. A brief 
history of the development of digital computation is developed 
following the occurrence of the four major themes of simulation, 
surface, system, and search.

1.6.3	 Chapter four
Chapter four is an in depth study of the role of constraints in 
design exploration. It introduces the thesis design experiments 
and contextualizes them in the context of design research. Chapter 
four was published in parallel with the thesis in the International 
Journal of Architectural Computing and is reproduced her with 
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permission of the publisher multi science, Brentworth, UK.

1.6.4	 Chapter five
In chapter five, the author explains and evaluates the design 
experiments conducted in the course of the thesis in depth. The 
focus is on the three main experiments: the chair design (the 
circular exploration study); the concept car design (the branching 
exploration study); and the hanging model design (the parallel 
exploration study). In addition, the chapter contains teaching 
examples of each of the exploration models. Each of the main 
experiments is preceded by a number of preliminary experiments 
that establish the constraints of the domain. They are surface 
control and material constraint experiments for the chair, functional 
driver experiments for the car experiments and graphic statics 
experiments for the hanging model.

1.6.5	 Chapter six
Chapter six concludes the thesis. The author discusses the role of 
constraints as design drivers in the light of the experiments. The 
author claims that it is necessary to go beyond the geometry-based, 
form-descriptive approach of today’s digital design environments, 
and to choose instead a process oriented approach where design 
emerges from the modeling of the constraints and the analysis of 
the design problem. 

1.7	 Beyond Geometry 
D’Arcy Thompson describes form as a diagram of forces (Thompson 
1942), Christopher Alexander goes further in defining a design as 
the attempt to “make a diagram for forces whose fields we do not 
understand” (Alexander 1964). In this thesis, experiments were 
conducted to research the emergence of an understanding of the 
forces involved in design and design exploration and how design 
can benefit from it. 
The focus of the experiments has been on the creation of innovative 
design, not on conforming to conventional design solutions in 
the experiments’ respective design domains. Innovation is either 
in the idea (in the case of a novel design problem) or in finding a 
new constellations of established components and constraints (in 
the case of a known design problem), or in the emergent design 
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discovered from exercising a constraint network. 
In contrast, the strategy of incremental improvements is firmly 
established in engineering and a powerful design method in the 
highly constrained design problems. Its disadvantages, however, 
are in the resistance to conceptual change due to the many 
dependencies.
With improved, integrated and digitally supported exploration 
methods for design, it will be possible to provide a competitive 
design approach that can stand its ground against the more 
conservative approach of incremental improvements.
By integrating the conceptual exploration more closely with the 
exploration of design implementation, as demonstrated in this 
thesis, expertise can be generated in parallel with the development 
of the design. At the same time, this expertise can be captured for 
future, open-ended design exploration should another design 
iteration be necessary.
This has implications not only for digital tools, but for the concept 
and formulation of design exploration in general. The thesis does 
only offer a glimpse at the range of design and many of core 
concepts of architectural design remain unaddressed. There is no 
claim for the universal applicability of the concepts presented. 
Rather a call for rethinking the use of computational tools and 
models as tools for design specific exploration. 
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Fig 5: Gaudi’ Colonia Guell hanging 
model on the right. On the left 
a photograph of the model with 
surfaces painted over the strings to 
capture the interior space.
Image (IL 34 Das Modell ,Tomlow”, J. 
et al)..

2	 Precedents
Previous work on design explorers that integrate design specific 
constraints is focused mainly on two areas: physical modeling and 
computational modeling. Physical design explorers in the traditions 
of Antonio Gaudi and Frei Otto compute form based on forces 
present. Computational models do so using dynamic relaxation 
techniques or constraint solvers. Of related interest to the question 
of constraint-driven design explorers is a line of research in building 
technology that focuses on bidirectional constraint modeling in 
building performance such as daylight, thermal performance and 
energy use. Similarly, there is a large body of research in engineering 
focused on constraints in part assemblies. This includes the robust 
description of part geometries, taking into account the context of 
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the parts in a parametric environment.
A thesis that addresses design exploration in the context of 
constraints must address the precedent work of architects using 
physical form finding. Usually this work is presented in the 
context of structural optimization. I would like to focus instead 
on its relevance as physical computation for integrative design 
exploration: the exploration of design not just in a formal sense, but 
rather as an integrative method with a design explorer modeled to 
respond to multiple constraints. 
The precedents in engineering serve as examples of how to 
integrate analytical methods into generative tools for design 
exploration. The section on software architectures addresses 
possible new models for design specific software developments to 
replace the current monolithic CAD design software application.
The following sections address precedents of design explorers or 
design exploration processes in theses areas.

2.1	 Precedents in Architecture
This section will discuss precedent work in architecture starting with 
Antonio Gaudi’s hanging model in the context of design exploration. 
It will lay out material specific geometric design methods such as 
those employed in the offices of Frank O. Gehry and Partners or 
Foster and Partners. Christopher Alexander’s Synthesis of Form is 
used to put the results of the thesis experiments into the larger 
context of design methodology.

2.1.1	 Gaudi’s physical based design exploration
The physical models of Antonio Gaudi in particular fit this notion 
of a design explorer as they address both structural and formal 
considerations and present the designer at all times with a status 
of the design that reflects the cumulative changes applied to the 
model. In addition to reflecting the intentions of the designer 
through multiple constraints, the hanging models are collaborative 
tools. They allow for a number of people to simultaneously 
view and interact with the design representation. All of these 
characteristics make hanging chain models a convincing example 
of a design explorer as developed in this thesis. Gaudi’s work has 
received extensive attention in recent years due to the rise of 
freeform architecture and the associated frustration in uninformed 
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shape making made possible by today’s digital tools. Gaudi’s form 
finding principles seem to offer an alternative to uncontextualized 
geometric sculpting in promising a rationale for freeform design. 
The hanging chain model reflects Gaudi’s design intent in the form 
of an explorative device within the constraints of a physical object. 
Certainly, Gaudi would have pushed this device further and might 
have even deviated from the pure hanging model if there had been 
alternatives to the time consuming physical method of tuning 
the model. His renderings of the interior spaces, accomplished 
by painting on the wireframe photos of the hanging structure, 
provided him with surfaces to visualize the interior spaces more 
accurately, and are examples of his search for alternative design 
methods. 
In addition, it is important to keep in mind that the models were 
subject to extensive changes due to translation from the zero 
volume string mesh to the material envelope of the built form. This 
translation is not a formalized conversion that offers a complete 
mapping of the string model to a model with the volumetric brick 
information contained. This step was based on experience and 
knowledge about the material and structure, but only partially 
represented in the string model in form of the weights. This is 
an important design step the translation of the abstract spatial 
diagram into a materialized volumetric structure.
Only for one project, the Colonia Guell, Gaudi was using the 
hanging model (Tomlow 1989) The Sagrada Familia, for instance, 
was not modeled using a hanging model, but instead by stacking 
plaster pieces. Here the relationships between structure, form 
and the building components are more complex. The columns’ 
swept surfaces are constraint both by fabrication constraints and 
the overall structural skeleton governed by the force equilibrium. 
Fabrication constraints on the component level can potentially 
compete with global constraints governing the overall structure. In 
the case of the building block its mass in comparison to the overall 
structure is negligible, but it is indeed difficult to find the fitting 
swept surfaces for the components in all cases (Burry 2001). 
The use of distinct design representation for the different design 
indicates on the one hand Gaudi’s ability to experiment and expand 
the tools at his disposal but on the other hand also the necessity to 
develop design specific design explorers.
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2.1.2	 Christopher Alexander’s Design Diagramming
Christopher Alexander’s “On Synthesis of Form” (Alexander 1964) 
lays out a design methodology which, he stresses, is not a design 
methodology per se, but to be understood as an integral part of the 
process of making design. His argument for rationality in design 
and the need for formalism is to advance design beyond guessing. 
He argues that the big challenge in design is to “make a diagram 
for forces whose fields we do not understand”. (Alexander 1964)]. 
He refers to the search for a design form as a process of finding a 
good fit or as a process where the solution emerges as those that 
do not fulfill the design goals are dismissed. 
He contrasts self-conscious and unselfconscious processes of 
building, contrasting a tradition of craftsmanship reliant on 
incremental improvement yet unable to respond to unfamiliar 
tasks, with that of self-conscious design that produces forms of 
bad fit through the increasing distance between design process 
and execution, but capable to adapt to change.
Demands on design are complex and changes to existing solutions 
pose a highly complex challenge to the designer. Alexander 
identifies the shortcoming of diagramming in the design process 
based on concepts currently in use rather than on the analysis of 
the problem that is being investigated. He proposes a process of 
decomposing the problem into its subsystems in order to describe 
a program for the designer. 
The thesis describes a similar process in the creation of function 
chains for design generation for the writing device study in chapter 
five.

2.1.3	 Gehry’s paper based design exploration 
Gehry and Partners in general follow a sculpturally driven design 
process where the translation of form into buildable components 
is developed after establishing the form. This has been referred to 
a post rationalizing the design. An important design vehicle in the 
office is the use of paper at the sketch stage, the modeling stage and 
even at the construction stage in form of paper like materials like 
sheet metal. Dennis Shelden from Gehry Technologies developed 
computational tools for the Rhino modeling platform and for 
CATIA© that allow designers to model surfaces and be notified, 
when they leave the range of developable surfaces within the 

Developable surface in Gehry’s 
architecture. It is clearly visible how 
the geometric constraint of straight 
lines of ruling is directly linked to the 
construction constraint.
Image: (Shelden 2002)
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surface handling interface (Shelden 2002). This was made possible 
by taking material constraints, tested first in physical modeling, 
through paper and cardboard based models, and translating these 
into a digital representation. This gives the designer more flexibility 
in terms of dimensions and geometric interaction, as well as the 
ability to analyze the properties of the resultant surface. This is an 
example of how a constraint has been turned into a design driver 
through the use of a design explorer that embodies the constraint, 
in this case the developable surface tool. More generally, the use 
of paper as a design generator as well as an abstraction of form 
is a powerful instance of a shared design representation in a 
collaborative design environment.

Dennis Shelden developed a 
computational developable surface 
tool programmed in rhino that allows 
the user to explore a range of single 
curvature surfaces. A color warning is 
given if the developability constraint 
is violated. 
One could describe this tool as a 
design explorer with embedded 
material constraints, which are 
enforced geometrically.
Image:  (Shelden 2002)
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3

The functions z1, z2 and z3 are each built up from its own fundamental function. The
first, shown in figure 2, supplies the correct change in level between the rectangular
boundary and the circular Reading Room. The vertical scale in the figure is chosen
arbitrarily. The original scheme had the roof level arching up along each of the rectangle
edges, and this would have had certain structural advantages, but the final scheme has a
constant height along the edges. The remaining two fundamental functions give z = 0
around the rectangular and circular boundaries.

Figure 2. Level change function,          Figure 3. Function with finite curvature at corners
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Figure 4. Function with conical corners
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Figure 5. Final surface

2.1.4	 Foster and Partner’s British Museum 
courtyard roof 

Foster and Partners may be categorized to take the other end of the 
pre and post rationalized spectrum in comparison to Gehry. The 
design process in the office regularly works with building systems 
in mind or the parallel development of construction principle and 
design development and they are thereby pre-rationalizing the 

designs. The British Museum courtyard roof design goes further 
in the refinement of the geometry. It was designed by Foster and 
Partners together with structural consultant Chris Williams for 
Buro Happold. The roof is remarkable in achieving structural and 
architectural clarity within the highly constrained context of the 
inner courtyard of the British Museum in London. Not only do the 
spanning distances vary widely, but the placement of the inner 
cylinder is not centered in the courtyard. A further complication 
was being able to load the existing structure above the façade 
cornice only. This highly challenging and irregular context was 
resolved very elegantly with a seemingly floating triangulated grid 
shell without additional structural members or supports. The result 
was only possible in this clarity through the use of computational 

Chris Williams from Bath University 
generated the above grid 
distributions for the British Museum 
courtyard roof. The structure is subject 
to multiple constraints: Structural, 
aesthetical, economical, fabrication 
and assembly related ones.
The position of each node was 
determined through dynamic 

relaxation. The starting condition 
is a discontinuous grid, the end 
condition exhibits continuity in the 
flow of lines across all parts of the 
roof, while keeping element lengths 
similar. The structural constraints are 
enforced through a design surface 
principle.  The aesthetic appearance 
emerges from the dynamic relaxation 
distribution.  This is an instance of a 
design explorer that relies only both 
optimization and geometric principles 
to simultaneously enforce constraints. 
Variations for explorations are easily 
possible by rerunning the program.
Image: Chris Williams http://www.
bath.ac.uk/~abscjkw/
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techniques that combined the constraints of the geometry of 
structural shell geometry with the economy and aesthetic of self 
similar structural members. The technique used, and demonstrated 
by the consulting engineer Chris Williams in his presentations is 
one of dynamic relaxation of a initial simplistic straight line solution 
spanning from the courtyard edge to the rotunda. There are many 
abrupt transitions in the corner diagonals between members that 
would not be acceptable visually in such an exposed roof shell. The 
dynamic relaxation technique operates on the intersection nodes 
moving them incrementally around step by step measuring with 
the goal of minimizing the energy present in the system. Energy 
is represented by how long the members stretch between the 
nodes the longer the distance the higher the energy stored in 
this particular member. This will cause the nodes connected to 
that member to move closer and thereby reducing the energy. 
Eventually the grid system settles into minimal energy equilibrium. 
This state will exhibit the desired even distribution of length and 
smooth transitions even in the more complicated corners of the 
roof. 
The principle of dynamic relaxation is related to the ordinary 
differential equation (ODE) solvers used by the author in the 
hanging chain modeler and the driving simulators. Dynamic 
relaxation techniques are simpler algorithmically but offer a wide 
range of application in engineering and as demonstrated here also 
in the optimization within the context of engineering and design 
constraints.

2.2	 Precedents in Structural Design
This section will discuss structural design tools with a focus on 
exploration of form and forces. Starting from graphic statics and 
Active Statics it will touch upon Schlaich Bergermann’s glass domes, 
Heinz Isler’s shell structures, and topology optimization. These 
examples are relevant for the thesis as instances of performance 
based analytical tools. They support design exploration and are 
implemented in most cases to allow for bidirectional explorations 
back and forth between the different design domains of structure 
and form.

Image of the courtyard structure 
showing the even distribution and 
the visual continuity despite the 
irregular courtyard layout.
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2.2.1	 Graphic statics 
One example of a bi-directional system that integrates multiple 
domains is graphic statics. The geometry of the force polygon is 
directly linked to the form diagram through simple geometric 
constraints. Graphic statics serves as a starting point for the 
integration of other domains besides form and structure, for 
instance fabrication procedures. This allows for an iterative 
design process in both structural design space and the geometric 
configuration of the design (Zalewski and Allen 1998)

Graphic statics is an elegant structural analysis method that has 
gained some popularity recently after being the status quo in 
structural engineering around 1900. Its simplicity and graphic 
based calculation make it ideal for both manual and digital 
constraint based design development.

2.2.2	 Active statics 
Active Statics is a digital implementation of graphic statics 
developed by Simon Greenwold and Ed Allen (Greenwold and 
Allen 2005). This interactive version of Graphic Statics allows for 
a much better exploration of the different scenarios for a given 
load or the variation of the starting conditions than a hand drawn 
version. It has a high educational value and has been used widely 
in courses on structure at MIT and beyond. However there are 
some limitations. The user can not build new structures at run 

Graphic statics work sheet for a bridge 
design exercise. Form and force 
polygon are linked through geometric 
constraints  such as that of being 
parallel.
The design can take place 
bidirectionally, either by driving the 
design from defining the forces or 
from specifying the starting geometry.
Image: (Zalewski and Allen 1998) 
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time. Another shortcoming is that it is not fully bidirectional, which 
means not every element in the implemented examples can be 
used to drive the rest of the graphic static assembly. This is a small 
detail but makes a significant computational difference. The Active 
Statics version relies on explicit calculations of all values through 
equations, whereas a fully bidirectional system would requires 
bidirectional solvers to find a solution with the given constraints. 
The digital hanging model project in the Chapter five Experiments 
allows both for user constructed structures at run time and uses a 
solver architecture that allows the interaction with any element in 
the design as a driver.

2.2.3	 Frei Otto and the ILEK Institute, Stuttgart
The Institute of Light Weight Structures at the University of Stuttgart 
developed a number of physical forms finding techniques based 
on soap bubbles, hanging chain models and foam principles to 
aid in structural form finding. Most of these processes were pre-
computational. They were based on the behavior of physical 
material that was then measured or photographed in order to 
scale the results to real structures. The Institute was founded by 
Frei Otto in 1964 (http://www.freiotto.com), and was next taken 
over by Jörg Schlaich in the 1990’s and most recently in 2001 by 
Werner Sobek. Frei Otto’s work and teaching initiated a world wide 
following in organic buildings that derive their structural form from 
the interaction of forces. A key aspect of his teaching is to stress 
that the geometry alone, even if derived through form finding by 
physical or computational means, does not constitute the solution. 
Rather, this geometry needs an expert to interpret and translate 
the results into details appropriate to material and scale in order 
to be a successful design. The work of ILEK is well documented in 
the literature. It will not be discussed in detail, but referenced as an 
early instance of research into design and the generation of form 
driven by the overlay of multiple constraints. Frei Otto reproduced 
had many of the physical building models at the IL where possible 
reproduced as digital models. The first digital model was created 
in 1966 by Klaus Linkwitz (Serebryakova 2006). Frei Otto does not 
believe teaching architectural design is actually possible beyond 
the foundations. He prefers the empirical approach: “I do not 
design, I search.” (Serebryakova 2006). Otto’s research, one could 

Active statics - an interactive 
structure and form explorer by Simon 
Greenwold and Ed Allen. It allows to 
vary visually force and form polygon 
through a graphical interface. It is 
only partially bidirectional due to the 
lack of a solver architecture, but very 
educational through the immediate 
response to changes on either 
polygon. 
Image: Screenshot Active Statics 
http://acg.media.mit.edu/people/
simong/statics/data/index.html
Simon Greenwold 

The images show only a fraction 
of the physical based form finding 
methods developed by the Institute 
of Lightstructures at the University of 
Stuttgart under the guidance of Frei 
Otto. 
Image: ILEK, Stuttgart. http://www.
uni-stuttgart.de/ilek/Fotoarchiv/
Fotoarchiv.html
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argue, constitutes a series of design explorers following his belief 
that design is a search for the shape of things.

2.2.4	 Planar panel solutions for freeform surfaces
In the framework of their engineering practice, Jörg Schlaich 
and Hans Schober developed these principles of form finding as 
related to fabrication. This approach is discussed in the following 

section. The use of translation surfaces allows for the fabrication of 
double curved surfaces with quadrangular, planar elements and 
constitutes a further geometric constraint modeling principle. It has 
been perfected by the engineering office of Schlaich Bergermann 
und Partner since the early 1990s on a number of freeform glass 
roofs. The challenge in the construction of freeform glass roofs is 
to keep the number of connections as small as possible, to avoid 
sharp angles in the glass pieces, to minimize material use during 
cutting, and to avoid stress fractures during handling, installation 
and use A robust fabrication constraint strategy is a necessity to 
allow for the geometric adjustments to achieve buckling resistance 

Schlaich and Schober  developed a 
series of triangular and quadrangular 
light weight glass roofs following a 
geometric constraint principle called 
translation surfaces.
The approach allows for free form 
surface approximation and robust 
quadrangular tiling solutions. 
Image: (Schlaich and Schober 2005)
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in the very thin glass shell domes. Translation surfaces procedure 
allows for the use of planar glazing and plane formwork elements, 
a major prerequisite for the economic realization of glazed, opaque 
or concrete spatial structures (Schober 2002). 
The engineers’ response to architects’ freeform geometries was a 
geometric construction system that enforces the constraints while 
allowing variability within the constraints. While the geometric 

principle of the translation surfaces is not a novel development in 
its own right, its application for freeform roof surfaces was. 

2.2.5	 Hans Isler’s physical form finding
Another instance of the use of physical hanging models is by the 
Swiss engineer Hans Isler. He has derived an impressive set of light 
concrete shells from very precisely built and measured hanging 
models. His technique is one of externalizing a design idea in form 
of a model, which he then meticulously fine tunes and adapts 
before measuring it. The measurements are then scaled up and 
adopted to the load conditions as well as material and construction 
specific constraints. Isler does not stop when his shells are built, 
however. Rather, he continues to monitor and measure the 

The hippo house in Berlin by Schlaich 
Bergermann and Partner. The tensile 
grid interacts with the glass structure. 
The range of forms is not confined to 
spherical or toroidal shapes but the 
structural demands on the shell limits 
the range structural load bearing 
glass roofs.
Image: (Schlaich and Schober 2005)
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structures after they have been completed. This is an important 
aspect of Isler’s work, not only since he feels responsible for the 
safety of the structures, but also to provide feedback to earlier 
design assumptions and how they have played out in practice and 
over time. In a way, Isler is working with a circular dependencies 
network of designing, testing and building his structures. A shell 
design that works reliably, is elegant and minimal in material usage 
will, dimensionally, not be far away from a design that might fail, 
use excessive material or lack the refinement of Isler’s shells. The 
type of design exploration Isler uses is focusing on fine tuning a 
proven design method to perfection, as even small deviations 
from a balanced design can affect the quality of the final result. 
In the thesis experiments this type of exploration is most closely 
followed in the chair example, where the set of constraints are 
known and the design goal as well and the exploration aims at 
finding a balance between them. The demands on architecture 
in terms of building performance increase making the sort of fine 
tuning of a design a very relevant challenge in architectural design 
exploration.
Isler: “[T]his is only the first step to finding the form. Afterwards one 
has to do the exact structural analysis, the modeling investigation, 
the layout of reinforcement and pre-stressing elements, and 
the support details. Also, the designer needs to think out the 
construction problems and finally to observe carefully the structure 
while it is in use.” (Chilton 2000)
Since the 1950s, Swiss engineer Heinz Isler has pioneered shell 
structures with minimal thickness. The lines of thrust lie exactly 
within the thin shell cross-section. Isler extracts the geometry in a 
very tedious translation process from the physical scale model and 
scales it to full size.  
Isler himself on a number of occasions came across what he thought 
were mistakes in the models. He commented that it was a sort of 
non-correctness in his ideas at first, a mistake. He was unhappy 
that this experiment did not succeed but finally he realized that 
it was giving him the solution for three problems that he had not 
thought of. (Chilton 2000)

2.2.6	 Topology optimization
Topology optimization is an example of a structurally driven 

An image of a scaled model of a 
thin concrete shell by Heinz Isler 
from the exhibition “The Art of Swiss 
Engineering” 2005 
Image: Heinz Isler
http://web.mit.edu/museum/
exhibitions/galleries/swisslegacy/1.
html
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design process that can be inversed: to create topology from forces 
present while taking into account constraints of limited area and 
material. One can also start by drawing the desired envelope of 
material and let the structure evolve within it. The leaders in the 
field of topology optimization are M.P. Bendsoe and O. Sigmund 
with their implementation TopOpt. (Sigmund 1994).
 TopOpt focuses on optimized use of material within a designated 

design space in response to the presence of forces. The novel 
approach is the optimization of the structural topology in 
combination with the geometric dimensions of the structure. 
The approach makes use of Finite Element Modeling (FEM). But in 
contrast to conventional FEM analysis the FEM is used to generate a 
design geometry and topology. The authors caution that the process 
produces extreme solutions, meaning that the solution is not 
robust to slight adjustments of the starting conditions. Still, TopOpt 
is a very promising instance of the use of analytical engineering 
principles in a generative manner for design exploration. 

Example of Topology Optimizer in 
three dimension 
All images  this page: www.topopt.
dtu.dk by M.P. Bendsoe and O. 
Sigmund, TOPOPT. 

Sequence of a truss topology 
optimization over time from a set of 
forces. in two dimensions. (top)

Optimization of  a satellite assembly: 
in three dimensions.  (right)
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2.3	 Precedents in Artificial Intelligence
Constraint solving systems are common in artificial intelligence for 
robotics and expert systems. Constraint resolution is a common 
approach to modeling artificial intelligence. Many expert systems 
are based on logic using constraint resolution as in: “All birds are 
animals”, “Some birds can fly”, – “Is every animal that can fly a 
bird?” The answer is no, as the first statement would have to be “All 
animals are birds” in order to give a certain answer. The goal of this 
type of constraint resolution is to build up very large databases and 
gradually arrive at a notion of common sense within the system, 
which is essential for any intelligent system to operate and reason 
within the physical world and to interact with humans. While these 
constraint networks are very powerful, they are not very good at 
dealing with the sort of ambiguity common in design. However 
for functional descriptions of design and non geometric design 
generation logic solvers are important. The thesis does not contain 
any implementations of the functional explorations though beyond 
the diagramming studies of the writing devices. 
Other models from Artificial Intelligence that were explored for 
this thesis in course work were Genetic Algorithms (GA) Genetic 
Programming (GP) and Artificial Chemistry (AC). GAs provide a 
means to search for design solutions from a defined solution set 
using constraints in the form of fitness functions. Although fitness 
functions are not technically constraints, the selection pressure 
over time enforces the constraints indirectly in the solution set. The 
GA examples are shown in the constraints for design exploration 
section. They were used for driving parametric models to achieve 
quantitative goals such as building volumes or geometric properties 
such as certain surface properties for fabrication.
Rodney Brooks, a strong advocate for embodied intelligence in AI 
over the construction of abstracted worlds in AI research warns 
in his paper “Intelligence without Representation” of abstraction. 
Many of the problems in AI seem to apply to computational design 
as well. He argues that the wrong kind of abstractions factor out all 
the aspects of perception and motor skills that he says are the hard 
problem to solve Brooks argues that the abstraction of a problem 
is the essence of intelligence and the hard part of the problem to 
be solved (Brooks 1991). 
For design explorers this means that the definition of the constraints 
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for a design problem to be explored is already a major part of the 
exploration itself and might in fact be the most challenging part. 
To construct a design explorer to explore possible design problems 
themselves will be even harder. The branching exploration discussed 
in chapter 5 for the concept car design falls into this category.

2.4	 Software Architecture for Exploration
The thesis attempts to invert these approaches and develop 
computational and conceptual approaches that allow constraints 
to become design drivers in the exploration of a design problem. 
The premise is to model the constraints in a way that they can be 
exercised interactively.

2.4.1	 Analytical approaches in engineering software
Integrated engineering software packages offer parallel software 
components for different design representations and design 
domains. For instance, CATIA© a software package for air and space 
and well as automotive technology offers a Finite Element Modeling 
(FEM) package that can be directly linked to design geometry from 
the solid modeling module. This is a very powerful feature, which 
allows the iterative testing of designs both in terms of form factors 
and in terms of structural performance.
The shortcoming lies in the type of analysis. It is a one directional 
analytical translation of geometry into a force distribution. It does 
not provide the inverse approach of creating a structure for a set 
of forces.
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2.4.2	 Building performance evaluation - Ecotect
Ecotect provides performance analysis lighting, acoustics, and 
thermal performance evaluation with a focus on the integration 
with design. It is unique in its ease of use and accessibility. In 
addition it has examples where performance measures can be used 
in a generative principle. The software allows for the creation of 
simple design geometry directly within the analysis environment. 

It also has features that allow the reversal of the design direction – 
essentially a bidirectional design process. For instance, it is possible 
to calculate the accumulative shadow created by a window shade 
over the course of a year, given a specific building site. In reverse 
it is also possible to generate such a shading device from the 
constraint to cast shadow on a specified window opening.
This reversal might seem trivial at first, but it illustrates a fundamental 
shift in the design process: the reversal of driver and driven in 
design exploration. The design problem is much better understood 
if cause and effect can be reversed. This is especially true in cases 

Ecotect by Andrew Marsh. The tool 
is mostly an analytical performance 
based tool for lighting, acoustics 
and energy analysis. But its simple 
interface and the ability to model 
and vary as well as script geometry 
gives it much bigger potential for 
design exploration. It is also possible 
to generate geometry from lighting 

conditions, such as a shading device 
that will keep a given window 
out of the sun year round. Design 
environment like ecotect that 
integrate analysis and generation are 
very promising developments toward 
integrated design explorers..
Image: Screenshot Ecotect
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where the artifacts that are created defy our expectations, as it was 
the case for the oddly shaped year round shading device from the 
example above.

2.4.3	 Parametric and associative parametric 
software

In recent years there has been an increasing interest and 

investment into parametric and associative parametric software in 
educational contexts and in professional practice. It is a marginal, 
but noticeable trend. Parametric software, riding on the success 
of the use of CATIA in the building projects of Frank O. Gehry 
and others, has the reputation of making otherwise impossible 
projects a reality. But the question remains: What enabled what? 
It was it the architectural imagination that made it possible to 
appropriate engineering software package for architectural use, 
despite all its shortcomings? Or was it the software development 

Rendered and hidden

That’s it for now. In order to be able to move the initial points you may want to toggle the BSpline surface to
“Deferred” the red triangle and click on the bspline0001 instance from the Symbolic tree mode (since it is hidden we
cannot select it from the geometry model)

Generative Components developed 
by Robert Aish for Bentley. Generative 
Components is a unique variation of a 
parametric and associative modeling 
software. It allows for the extension 
of the tool set by the user from any of 
the four levels of interacting with the 
system:

- Manually modeling a component..
- Editing the topology and 
associativity.
- Scripting a geometry.
- Programming a component in C#.

This parallel approach allows to 
gradually introduce programming 
principles at different levels of 
abstraction of the task. 
Image: Screenshot Generative 
Components by the author.
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and engineering that went into the tool that brought the Gehry 
sketches into reality? It is not one or the other. The imagination has 
always played a driving role in the creation of new tools. In reverse, 
the availability of new processes and tools can inspire new ideas.
The parametric associative modeling of a design problem helps 
greatly in exploring dimensional and proportional variations. The 
integration of solvers for part assemblies and two dimensional 

constrained drawings offer some level of bidirectional exploration 
in the digital realm.

2.5	 How other Methods Fail
The main problem in setting up a design exploration is capturing 
a design problem with its constraints and translating it into a 
design explorer. The goal of a design explorer is to aid in finding 
novel solutions or to make adjustments in existing approaches. 
The solution should fulfill all the constraints while negotiating the 
user’s input. 
For open-ended problem descriptions, creating and defining the 
design problem is the hardest part. In the case of the concept 
car design, the problem description initially is very broad, the 

Eladio Dieste’s church in Atlantido 
during construction. Dieste used 
simple construction principles to 
achieve his complex curved structural 
reinforced brick shells and walls. 
The image shows the physical use of 
lines of ruling for the construction 
of a brick wall. This example is an 
interesting variation on the paper 
based surfaces of Gehry. Brick allows 
for non developable ruled surfaces to 
be built both share straight lines of 
ruling. Dieste literally built the control 
polygon of the surface physically.
Image: Eladio Dieste
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starting point being questions of mobility in the urban context. 
The solutions that developed over time were as much about 
defining the design task at hand as they were design solutions for 
it. If constraints don’t exist or can be easily adjusted, the design 
problem becomes much harder to pin down. The thesis illustrates 
the approach taken by the author to defining the design problem 
and finding solutions to it, through selective prototyping: a way 

of capturing subsets of constraints to test their interplay and the 
emergent design solutions.
Grammatical approaches, which were initially studied, fail in the 
context of this open design problem due to their reliance on 
generative rules. These are best derived from a set of existing design 
solutions. For the concept car studio, the design problems were so 
far removed from existing solutions, both in vehicle architecture 
and design response, that a rule based approach drawing from 
precedent designs did not prove to be useful. 
Physical design explorers in the realm of form finding and structural 
evaluation are very powerful collaborative and interactive design 
explorers. They allow for tangible spatial interaction with the 
design that allows people to work on it simultaneously. However, 

Real time simulation of cloth. The 
improvement of solvers and the 
particle spring model for cloth 
simulation made real time realistic 
cloth simulations possible. Many 
other types of simulation can benefit 
from this fast and robust solver 
system.  The hanging model uses a 
particle spring system library written 
by Simon Greenwold that is based on 
cloth simulation precedent.
Image: (Baraff and Witkin 1998.)
Digital reprint ©1998 by CMU. The 
original printed paper is ©1998 by the 
ACM.
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their biggest strength, their physical presence, is also their biggest 
disadvantage. Their physical presence and size makes them very 
difficult to construct and maintain, let alone to share them across 
larger distances. 
Designing with constraints poses a challenge of representing 
both the design problem and the constraint influence accurately 
enough to obtain meaningful results, but not too specifically to 
prevent any evolution of the design. 
Modeling material constraints in are a good example for this 
dilemma. On the one hand, the structural and material resistance 
could be precisely modeled through a Finite Element Model of the 
volumetric object. On the other hand, one could choose a different 
material representation that is design relevant rather than realistic 
such as developability (Shelden 2002). The two approaches could 
be called holistic modeling and selective or subjective modeling 
respectively. Both are simplified, computational models of a much 
more complex physical artifact, one aims at simulation, and the 
other focuses on a design-specific representation.
Creating a design representation has to go beyond a simulation 
of conventions and focus on the aspects that could lead to an 
innovative use of the material. It is the difference between an 
analytical and a generative approach to design.
The thesis argues for a generative approach to design exploration. 
This means that alternatives to purely analytical simulation have to 
be found to support the generative aspects in design exploration.

2.5.1	 Limitations of parametric associative 
modeling 

It is safe to say that the current set of parametric and parametric 
associative tools suffers from limitations in the definition of 
design. One of those limitations is the hierarchical structure of the 
dependency chains in basic parametric definitions. These require 
structuring the design approach early on in the design process and 
offer little flexibility once a model has been created. Associative 
parametric models represent design through parametric geometry. 
Although multiple ways may exist to describe any particular state 
of design geometry, translations to alternative ways of seeing and 
describing the design geometry is cumbersome and limited. The 
parametric redescriptions cannot keep up with the rapid changes in 

Finite Element Analysis evaluation of 
different geometric variants of the 
puzzle joint  by the author.
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design interpretations by the designer. This withholds the benefits 
of parametric modeling from the early brainstorming sessions in 
design. In the later phases, it tends to prematurely freeze design 
due to the investments made into the parametric associative design 
description, rather than to support exploration at an elevated level 
of detail through an exercisable model.

2.5.2	 Limitations of Finite Element Modeling (FEM)
FEM is a very powerful structural and dynamic load analysis 
method that allows for a wide range of applications in a number 
of domains ranging from structural analysis to frequency analysis 
in electronics. 
The core limitation of FEM methods for design exploration is their 
one-directional, analytical nature. The result of a FEM analysis of an 
architectural structure offers little in terms of how to change the 
geometry to overcome any problems detected in the analysis. This 
makes the approach of little use for an exploration based design 
approach, unless it is combined with an optimization technique 
that runs through a large number of design iterations using a 

Example of an inversal of the typical 
analytical lighting problem. The 
after a desired lightening effect is 
marked on the floor the program 
approximates the lighting conditions 
necessary to achieve the desired 
effect. 
Image:  (Schoeneman et al 
1993)“Painting with Light”,  copyright 
ACM, copied with permission of the 

Alternatives to closed software 
environments are community 
based design platforms such as Ben 
Fry’s and Casey Reas’ processing 
environment. With a user community 
of several thousand designers it has 
grown into a true exchange platform 
of computational design. The 
platform allows to capture and share 
computational ideas in JAVA through 
a series of elegant methods that 
lower the bar for beginners and make 
higher functionality easier accessible 
to expert users. 
Image and program:
(Fry and Reas 2006)
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fitness function to measure the progress. A promising extension 
of the use of FEM models is topology optimization. By integrating 
constraints into the FEM calculations, it is possible to iterate back 
and forth between a desired topology, structural optimization and 
material distribution within the specified design envelope. Another 
successful example of the use of FEM in a generative, rule based 
system is the EifForm application developed by Kristina Shea (Shea 

1996).

2.5.3	 Limitations of interface based digital design 
tools 

Each computer aided design program relies on a specific set of 
core geometries. Accordingly, the designs produced with a specific 
program share a similar aesthetic. Diversions from the easily 
accessible geometries are possible, but this requires a conscious 
design intent and considerable effort on the user’s part. In addition, 

Eifform by Kristina Shea. From Essays 
of Discrete Structures: Purposeful 
Design of Grammatical Structures 
by Directed Stochastic Search’, Ph.D. 
Dissertation, Kristina Shea, Carnegie 
Mellon University, Pittsburgh, PA 
(USA). 1997. 
The combination of search and ruled 
based generative techniques and 
analytical methods is remarkable as 
an integrative approach.
Image: (Shea 1997)
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software packages tend to create biotopes of users fueled by 
influential teachers and practices. There is certainly a feedback loop 
between user community and software features, most observable 
in the surface use of MAYA, or the parametric façade objects of 
ArchiCad in the 1990’s in Berlin. 
Of course, it is essential to provide tools and interfaces to make 
complex geometric entities approachable to novice users, as it is the 
case with NURBS surfaces in most current modeling environments. 
The choice of interfaces defines the reach of the average user, and 
makes similar procedures available to a very large group of users 
simultaneously with their qualities and their shortcomings. Other 
similarly approachable interfaces to interact with the geometry 
may not make it on the toolbar therefore the interface choices 
distort the exposure of users to the computational geometry 
universe. This is unavoidable with any method, but nonetheless 
often missed in teaching these tools. Recent developments of 
increasingly exposing the inner workings of software to users 
through plug-in and scripting environments level the playing field 
somewhat. While programming libraries and languages suffer from 
similar effects of exposing certain concepts and hiding others, they 
certainly open up a wider designer defined toolbox, given some 
preliminary knowledge of programming is taught. 
Eventually the conceptual limitation of scripting and programming 
environments of software are too limiting for the bigger challenges 
of design exploration as well. A partial reinvention of software 
tools is necessary. The monolithic software giants of today are 
suffocating from their own legacy, the relative inertia of their user 
base aging together with the software platform, and the protocols 
and procedures that are resistant to change. 

2.6	 Conclusion
In conclusion of the precedents the author proposes an alternative 
approach to design software that focuses on an on the fly assembly 
of component, functionality, computational and conceptual 
models around a design task at hand. Such software architecture 
would rely most and foremost on interfaces and links between 
heterogeneous modules. Such an approach would face many 
challenges of supporting mappings between components that 
never worked together before. But if software would evolve parallel 

Series of geometric design studies for 
modeling lines of reflection based on 
the bidirectional solver environment 
in the  two dimensional sketching 
environment of CATIA©.
Image: Light ray studies by the author.
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to the understanding of a design problem, if the exploration of a 
novel design would be mirrored in the creation of a novel design 
environment, it could be a far more design process oriented 
interaction with the digital medium than in today’s skill based, 
commercial territory based software landscape. This process needs 
to be carried by many, can hardly be forced upon the industry by a 
few, and might find its precedents in the open source movement. 
But the hard question about interoperability and core design 
representations in such an open and evolving system are not 
answered by this comparison. The software industry gets routinely 
stuck in its attempts to define the next industry standard for 
interoperable, three dimensional, building information modeling, 
parametric, file standard. But maybe this approach is exactly the 
reverse of how it should be. Maybe the design projects should be the 
programs, developed by the designers to carry the complexity and 
to specify the problems to be solved and addressed by the vendors 
in an open source market place of design challenges triggered by 
design problems.  The software should evolve around the design 
task, not the other way around, this could even involve the people 
contributing to it, in a sort of free design agent environment where 
design problems trigger the assembly of teams of people and 
computational models and expertise on the fly and temporary, 
maybe even in a sort of eBay© like based market place. The analogy 
is not targeted at the business model so much as at the posting 
of challenges. Why should talented developers all be tied up in 
competing parallel software organization essentially producing 
very similar products averaging their products based on perceived 
market needs rather then as free agents joining selectively the 
development of specific novel computational challenges in micro 
teams digitally negotiated and possibly remotely? Such a field 
maybe initially chaotic but over time may develop a far more 
adaptive library of approaches and methods constantly evolving 
with the design world then monolithic conservative software 
players. IN micro steps this is already happening in the academic 
environment with students developing their project specific tools 
from a platform of core software and languages, initiatives like 
digital tooling tried to act as a gathering place for such efforts and 
in moderating and connecting interested parties.
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3	 Constraints for Design Exploration
In this thesis it is described how constraint modeling can support 
design innovation. Furthermore, it is laid out how constraints 
are employed in the construction and exploration of a model’s 
design space. The approach is placed within the context of design 
exploration using computational and conceptual representations of 
design. A review of the literature reveals that geometric, topologic, 
functional, and quantitative constraints are those most commonly 
used. For each constraint type, an example is presented drawing 
from several workshops and research conducted by the author. 
The examples range from product design, to structural design, to 
fabrication issues in freeform geometry. Based on the case studies, 
it is described how the different types of constraints can be used 
as design drivers and help in the exploration of solution spaces. 
In conclusion, the need for bidirectional exercising of constraints 
as the next challenge in design exploration is identified and its 
relevance for cross domain design is discussed.

3.1	 Constraints in the Context of 
Computational Modeling

Constraints are generally viewed as limiting factors in design. 
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But there is evidence in research (Burrow and Woodbury 1999) 
(Kryzysztof2003) (Gross 1985) and architectural practice (Shelden 
2002) (Schlaich and Schober 2005) that constraints can trigger the 
development of innovative design solutions and are a powerful 
way to drive solution space.
Constraints can help to focus design exploration and to work within 
the boundaries of available resources. There are different types of 
constraints and they can be applied to a range of aspects of the 
design problem. It is suggested that initially, a constraint may 
prove to be a limitation, but over the course of a design process 
it may evolve to become a driver for innovative design solutions 
to the problem. For design exploration, models that are not over-
constrained are necessary. How, then, can a constraint be modeled 
in a favorable way for design exploration? The type of constraint 
is less important than how it is modeled. For design exploration, 
models that are not over constrained are necessary.
To start, a number of core types of constraints and the models that 
can use them can be identified. In general, four types of constraints 
can be identified from the literature (Krzysztof 2003) (Gross 1985) 
relevant to the examples presented here;
•	 Functional constraints; Requirements for what a design solution must 

accomplish functionally.
•	 Topologic constraints; Relationships between entities that form a 

topology.
•	 Geometric constraints; Geometric dimensions as well as relationships.
•	 Quantitative constraints; Quantifiable measures such as volume, 

thickness or length.
An example is given for each of the constraint types in research 
conducted by the author. 
First, an example is presented where functional constraints are 
used as design drivers in a product design study looking at writing 
devices. The particular study was conducted in a concept car design 
studio headed by William J. Mitchell in 2004 at the MIT Media Lab. 
Second, an example of topologic constraints in a structural form-
finding implementation is presented, based on force equilibrium 
using particles and spring systems. This model enforces axial forces 
in structural members for a given topology and it was developed 
in a workshop co-taught by John Ochsendorf, Axel Kilian, Barbara 
Cutler, Eric Demaine, Marty Demaine, and Simon Greenwold in 2004 
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at MIT. Third, an example of geometric constraints is presented. 
This research study was conducted by the author for enforcing 
developable surface properties for the fabrication of double-
curved surface approximations. Finally, an example of quantitative 
constraints is presented. Two projects are shown, both based on 
searching the solution space using genetic algorithms and three 
dimensional constraint solvers to match parametric models to 
a target value.  One deals with an eight-degrees-of-freedom 
articulated car design, the other with a family of vase designs.
Although isolated constraint types can be identified, real world 
design problems are never isolated instances of one constraint 
or another. However, for the scope of this thesis, it is helpful to 
first look at individual constraint types and to suggest possible 
strategies in modeling them, before moving into how they might 
interact and overlap. The larger challenge is to implement robust 
constraint models that allow for linking different constraint types 
and develop computational models for digitally supporting design 
exploration.
Constraints in the context of a design exploration can become 
design drivers. A design driver is a prominent constraint in design 
exploration that is not easily changed and provides the strongest 
influence for directing the exploration. The claim is made in this 
thesis that constraints can play a key role as design drivers in 
triggering design innovation.
The chapter is structured as follows: First, the computational 
modeling of constraints and how these are identified in a design 
problem is discussed, how their analysis takes place, how constraints 
are translated into design drivers, how constraints are applied to a 
design domain, and how one may explore a solution space for a 
given set of constraints.
Second, the use of constraint modeling in design exploration 
is discussed. Different types of constraints are distinguished, 
bidirectionality is introduced, the translation between design 
representations, and the relationship between design domain and 
representation. Further translation models, bidirectional models, 
the circular design dependencies, the role of geometry and the use 
of programming in design exploration are examined. 
Modeling constraints computationally requires both a robust 
theoretical model as well as a working digital implementation. Some 
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examples of successful implementations and several diagrammatic 
models are shown. Solvers play a crucial role in constraint resolution 
and more specifically in the recent development of realistic cloth 
simulation in animations. The need for cloth simulation has pushed 
the development of robust and efficient solver techniques (Baraff 
and Witkin 1998).These solvers work well for problems that can be 
expressed as ordinary differential equations (ODE). However, not 

all design constraint problems translate into ODE’s. Constraints 
exist in many forms, and constraint solvers are developed domain 
specific. For instance in contrast to ODE based solvers many 
constraint solvers in artificial intelligence are based on unification 
algorithms, a cornerstone of automated theorem proving (Krzysztof 
2003), a class of constraints not addressed in this thesis. Therefore 
an important first step is identifying the design problem and its 
constraints and finding an appropriate constraint implementation. 
It is suggested that a useful technique is mapping out the 
components involved and identifying adjacencies between them. 
The next step is to identify the constraints and their relationships 
in order to turn the analytical approach into one that leads to novel 
design solutions.

Home networking analysis - mapping 
a design space.
The accumulation of information on 
the design problem helps to form the 
design space and possible approaches 
for exploring it. Formatting the 
information in the diagram potentially 
reveals more than what was put 
into it by exposing patterns and 

tendencies on the visual level that 
would not have been apparent in the 
data alone. Any diagram reflects a 
position and certain judgment due 
to its speculative nature. This reduces 
its value as an objective evaluation 
instrument while at the same time 
opening potential avenues to design. 
The thesis lays out computational 
approaches for design exploration 
that aim to capture some of the 
qualities of the diagram for digitally 
represented design problems. 
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3.2	 Identifying the Design Problem. Mapping 
the Domain

The definition of the design problem itself is a major step in setting 
up any constraint analysis. In order to understand the contributing 
factors and the cross dependencies a first step is to map the 
domain. An example for the mapping of a design domain is given 
in the diagram example below. The task is to identify the potential 
for new networking standards for the home networking market 
from analyzing the existing home infrastructure. Rather than using 
a matrix-based approach, the common devices in the home were 
positioned in relative networking proximity to each other to serve 
as a basis for identifying emerging network proximities. Proximity 
in the context of the diagram refers to both physical proximity 
of the devices in the home as well as proximity in terms of their 
being connected to the same or adjacent existing networks such 
as the power grid, an Ethernet or a wireless network for example. 
In addition emerging proximities in usage are taken into account, 
such as the increasing intermeshing of entertainment and 
computer equipment. Here the graphing of the design problem 
reveals emerging properties on a visual level. The mapping of 
design-relevant relationships, features, and properties can reveal 
proximities between elements of the design problem that were 
previously overlooked. It is a first step to externalizing the design 
problem and visualizing it. The specific diagramming technique 
evolves with the design problem that is being pictured and is 
part of the design approach. This example reflects the recording 
process of the gathered information in a spatial and visual manner 
in the course of many iterations throughout the gathering of 
information.
The accumulation of information on the design problem helps to 
form the design space and possible approaches for exploring it. 
Formatting the information in the diagram potentially reveals more 
than what was put into it by exposing patterns and tendencies on 
the visual level that would not have been apparent in the data 
alone. Diagramming the design problem is a form of evaluation 
and helps in formulating position for design additions. The example 
of mapping a domain demonstrates the first step in structuring a 
design problem and in identifying the constraints.
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3.3	 Analysis of the Constraints in the Design 
Problem

The description of a design problem involves analyzing the problem 
for existing constraints and degrees of freedom. One possible 
approach to do so is to identify the commonalities between a sample 
of existing design solutions to the problem. The example shown in 
Rather than choosing an approach based on the decomposition of 

components, a function-based approach was chosen. The function-
based analysis allows for more flexibility in the description and a 
more general description across solutions with very different form 
factors. In contrast, a grammatical subdivision based on the parts 
of existing designs would limit the exploration to dimensional 
variations of existing designs, or at best combinatorial variations of 
parametric parts. In the example the examples range from a basic 
piece of chalk to a mechanized retractable pencil. 

Writing device analysis exercise in 
design workshop, instructor Mitchell, 
W. J., Media Lab, MIT. Development of 
the writing device analysis Axel Kilian.
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 It is suggested to go beyond part decomposition and instead 
abstract the higher level common functional description of the set 
of design solutions. The functional description then is the starting 
point for a component independent design implementation that 
expands the studied set of precedents.
The pen diagram shows the different writing device functions 
coded by color. The first column shows the analysis of the existing 

Development of function chains for 
capturing a design problem and 
generating novel design solutions 
for it.
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devices, from a piece of chalk to a spray can. The analysis identifies 
key functions in the writing process across the example set. For 
instance, leaving a mark with a substance is a core function of all 
devices, at least the physical ones studied here. Given the function 
of leaving a mark with a substance and a target surface, a choice 
for delivering the substance is necessary. From the example set 
there seems to be great variety in how the substance is deposited, 
calling for a deposit function as a separate node from delivery. Last, 
the handling question triggers a design response for packaging. 
The substitution of functions with implementation choices creates 
functional demands. The difference between a function and the 
functional demand is that once a function has been substituted 
with an implementation choice that choice triggers a functional 
demand for its neighbors. A match between functions and 
components is not guaranteed for all the devices, which is a key 
difference of a functional analysis to a component-based analysis. 
But the absence of a one-to-one mapping provides the looseness 
in the design goal description that allows for novel designs. In fact, 
an implementation choice might bundle several functions into 
a single component such as it is the case for the chalk piece that 
implements leaving a mark, delivery and handling all in one step. 
Such bundling is one approach to lead to innovative designs not 
seen in the sample set.
The second column describes the devices in a tree-like fashion 
with increasing subdivision and complexity of the parts. The part 
hierarchy is appropriate for a descriptive approach but less so when 
aiming for design innovation.
The third column does exactly that. It provides a functional 
description of the family of writing devices and is based on five 
core functions of the set of studied writing instruments. Those 
functions are chained together based on interdependencies into 
a so-called function chain. The function chain works much like a 
design checklist prompting design choices without suggesting 
explicitly any of the studied precedents. When using a function 
chain its tokens are replaced with design choices one by one. 
For instance, the substance token may be replaced with ink. This 
choice triggers neighboring tokens to be implemented. Step 
by step, the abstract function chain is turned into a topology of 
functional demands. These demands form the basis for the next 
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step, which is form implementation. Functional demands are 
translated into geometrically variable components. Based on their 
neighboring conditions, they have to conform to adjacent tokens 
both in dimensions and propagation of functions. When following 
through this process a new design instance is created.
The example is kept abstract. The importance of the analysis of 
the design problem is emphasized before setting up a constraint 
network in terms of parametric topologies or functions in order to 
allow for novel solutions. Parametric variations alone can only cover 
a very small spectrum of possible designs within dimensional and 
compositional variation of parts, rather than providing conceptual 
variety. These limitations of parametric descriptions are often 
neglected in light of the current interest in parametric modeling 
in design.
Diagrams help in the exploration of function chain constraints. 
An analysis leads to a formal description of a solution space. That 
formal description is translated into a function chain that can be 
used to generate new designs within the writing device family. The 
functional constraints define the functional demands which in turn 
give rise to the implementation constraints. Because they apply to 
an earlier design stage, they have the potential to influence the 
design much more dramatically than the parametric variation of 
parts alone. 

3.4	 Translating Constraints into Design 
Drivers.

For design exploration it is necessary to translate constraints 
into design drivers. This can be accomplished by setting up an 
exploration system that incorporates the constraints but allows for 
exploration of the unconstrained aspects of a possible design. The 
hanging model implementation is an example of this approach 
and demonstrates the use of a solver-driven architecture based 
on particle and springs for tension-only form finding (Kilian 
and Ochsendorf 2005) (Kilian 2004). The hanging model is the 
exploration of geometry within the constraints of a given topology 
and structural behavior. In addition to adjusting the geometry to 
meet the structural constraints, the environment can visualize the 
approximate material envelope in proportion to the forces in the 
geometric members. This ties in an additional constraint, the load 
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bearing capacity of a given material. The material factor defines 
the minimal allowable cross section for the beam members under 
load according to local buckling length and in the implementation 
it provides the designer with a live feedback of member volumes 
in the current design configuration under the given material 
constraint.
In the implementation, an interactive model uses solvers to 
negotiate between a fixed topology and a slightly adjustable 
geometry based on simulated spring and point masses. Properties 
are embedded in the behavioral model through those primitives. 
The network of primitives is solved for equilibrium of forces 
through a solver. The digital implementation allows the user to 
shift the design driver. One way is through editing the topology, 
another through editing the geometry by changing the lengths of 
the members, and last by adjusting the material parameters which 
control the allowable cross sections of the beam extrusions based 
on the forces present in the members.

3.4.1	 Applying constraints to a problem domain
New constraints may also be applied to an existing design domain. 
For instance, this is the case with the increasing use of digital 
generative design in combination with CNC fabrication techniques 
in architectural design (Aranda and Lasch 2005) (Kilian 2003) 
(Loukissas 2003) (Kolarevic 2003) (Leach 2004). The fabrication 
techniques as well as the digital generation of the modeling 
information have specific constraints that apply to the design 
artifact. Examples are fabrication techniques based on flat sheet 
material. Flat-sheet fabrication and prototyping has increased 
due to the availability of relatively inexpensive CNC machinery for 
cutting, such as laser and plasma cutters. These machines are now 
available in design studios as well. The developability constraint 
imposed by the flat sheet material and the fabrication process has 
led to the development of a fabrication-specific design language in 
the construction industry similar to developments decades earlier 
in product, ship, and airplane design (Shelden 2002) (Coons 1964) 
(Casteljau 1963) (Liming 1944). 
At the core of this example is the translation of free-form shapes 
into developable surfaces using the developable primitive of the 
cone. The application of this primitive can produce interesting 
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new approaches to low cost fabrication of free-form surfaces. The 
example below is that of a cone-based translation of a free-form 
surface into developable cone-based parts.
In a more sophisticated version, the degree of curvature 
could control the spacing of the cones to achieve a consistent 
approximation error. Alternatively, a growth-based approach could 
be taken similar to the process in MoSS (Testa et al 2000) where 

an L-system guides the growth of a surface. In the example shown 
here, a simple close-packing-circle approach is used to produce the 
basis of the circular cones and the circle center points form the tip. 
The circular cone base is of interest as a spatial curve that coincides 
with the curvature of the surface while the resulting cone surface 
is still strictly developable. The fabrication constraint is therefore 
embedded in the geometric property of the chosen primitive, 
which makes it a very robust approach.
The next example of turning constraints into design drivers is taken 
from the Concept Car design studio mentioned above, headed by 
William J. Mitchell. The studio explored novel car architectures 
using a fairly open approach. One of the outcomes was the 
“athlete”, a car that has many more degrees of freedom for steering 

Top Left: Topology of the hanging 
model. 
Bottom left: Linking the resulting 
forces to the structure envelope 
based on the material constraint. 
Right: Mesh topology of the same 
environment. The constraint topology 
results in a geometric form.
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than the two degrees of freedom required to steer on a planar 
surface. Articulation became the design driver for this concept 
car design study. The additional degrees of freedom provide the 
opportunity to explore alternatives to rigid car chassis designs. The 
challenge was to solve the constraints for a particular movement 
and to determine the relationships between the different degrees 
of freedom for a particular movement. To do so, the three-

dimensional constraint solver in the CATIA© engineering package 
was used. The frame structure was modeled three-dimensionally 
and the components were jointed through geometric constraints. 
Relationships of movement between the different joints were 
then defined through equations. Finally, one of the joints was 
animated, which propagated the movement through the entire 
constraint system of the frame. This constraint solving study was 
used to validate the complex interdependencies of the six degrees 
of freedom. The study led to adjustments in the relationships of the 
constraints and to the addition of two constraints to compensate 
for non-planar wheel positions in turns. The problem had previously 
been studied in physical models, but only the constraint-solving 
approach provided results precise enough to detect the necessary 

Cone-based approximation of 
a double curved surface using 
developable surfaces only.
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adjustments in the joint layout.
Here constraint solving helps to find a working parameter 
configuration for driving the vehicle. In general it offers a direct 
way of resolving competing constraints in three dimensions.

3.4.2	 Exploring solution space for a set of 
constraints

Setting up a design problem through modeling its constraints is 
a first step to finding possible solutions. However, once a possible 
solution is found it is not guaranteed to be the only one or necessarily 
the best one. Genetic algorithms have been extensively used to 
optimize parametric objects for a given fitness function (Bentley 
1999). The fitness function can be viewed as an implementation for 
enforcing a constraint in form of the fitness measure. The resulting 
objects conform to the constraint by selection although strictly 
speaking the fitness function itself is not a constraint.
For the design exploration of lower dimensional parametric 
constructs, genetic algorithms often prove to be too cumbersome 

A three dimensional assembly for an 
articulated car with eight degrees of 
freedom driven by one parameter, 
the leaning angle. The remaining 
parameters are resolved through a 
constraint solver. 
The “Athlete” concept, developed in 
the concept car design studio, Media 
Lab, MIT. 
Team: Axel Kilian, Mitchell Joachim, 
Peter Schmidt, Patrik Künzler, Kate 
Tan, Luis Berrios-Negron, Lorene 
Gates-Spears, Timocin Pervane.



72

to set up or provide too little opportunity for user intervention 
in order to guide the process. An alternative, at least for lower 
dimensional parametric searches, is mapping parametric values to 
geometric control objects. These objects make it possible to capture 
desirable parametric settings and explore the neighborhood for 
small variations of the chosen values without losing the context of 
the previous result.

Besides their ability to support dimensional variations, parametric 
models also model topologic constraints through embedded part 
association. While navigating the solution of a parameterized 
object, one can record the different settings accordingly. This 
approach allows for interpolation of the intermitting parameters. A 
vase controlled by six parameters demonstrates a geometric control 
object to provide parameter interpolation and the possibility to 
record and memorize states of the parametric settings for the 
object. Designing parametrically poses the challenge of evaluating 
the range of possible outcomes presented by a parametric construct 
set up for the exploration.  Higher numbers of parameters make it 
less intuitive to interact with the design construct. The parametric 
control object also allows for another instance of a bidirectional 

A vase controlled by six parameters. 
Besides their ability to support 
dimensional variations, parametric 
models also model topological 
constraints through the embedded 
part association. While navigating the 
solution of a parameterized object, 
one can record the different settings 
accordingly. This approach allows 
for interpolation of the intermitting 
parameters. A vase controlled by six 
parameters demonstrates a geometric 
control object to provide parameter 
interpolation and the possibility to 
record and memorize states of the 
parametric settings for the object. 
Designing parametrically poses the 
challenge of evaluating the range 
of possible outcomes presented by 
a parametric construct set up for 
the exploration.  Higher numbers of 
parameters make it less intuitive to 
interact with the design construct.
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link as the control object is both generated by the sample design 
but also can by direct manipulation drive the set of designs.
A further example shows a family of objects whose parameters are 
mapped to one point’s XYZ value in a grid that samples a surface 
based on parametric UV spacing. Moving the points of the UV-
based grid changes the points XYZ coordinates which are mapped 
to the parameters and therefore regenerates the object family. By 

increasing or decreasing the sampling rate around the points of 
interest, one can explore parametric variations in more detail where 
needed. As an alternative to a design surface, one can use a design 
volume for the exploration. Each point is one sample within the 
exploration range. In order to increase the resolution of variations 
around a particular sample, the sampling can be bundled around 
one parameter The mapping of preferable design instances in the 
solution space creates spatial traces, which can suggest additional 
members of the design family by interpolation of or through spatial 
proximity to the existing samples in the solution space. 
Exploration is a central aspect of design. The process of defining 
the boundaries and constraints of an exploration helps to define 
the problem itself. The exploration of a design problem makes 

Genetic algorithm driven search 
for diagrid towers given an overall 
volume constraint.
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the designer aware of the limitations and constraints of a design 
problem. Computational methods to support design exploration 
potentially enhance the designers reach and allow for the modeling 
of complex interdependencies that cannot be easily abstracted. 

3.4.3	 Types of constraints
As discussed above, constraints play a central role in the definition 
of any instance of design exploration. Constraints set the limits 
and the metric of evaluation for an exploration. Although they 
are a limitation, they do help to externalize the issues present 
in a design problem and thereby can turn from constraints into 
design drivers. The constraints illustrated in the examples above 
are only a fraction of the constraints present in design problems. 
The examples are meant to be suggestive of the possibilities that 
come about with the integration of constraints in computationally 
supported exploration. This is not necessarily applicable to all 
design problems and not all constraints can be readily translated 

Mapping the solution space onto 
a parametric object. Exploration 
through sampling of the solution 
range via a point grid,
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into quantifiable representations. Those constraints require more 
sophisticated computational models to support them and are not 
addressed in the scope of this thesis.

3.5	 The Role of Constraints as Design 
drivers

Constraints in the context of a design exploration can turn into design 
drivers. Their role as design drivers is determined by their attributed 
weight in the design problem. A design driver is a constraint that 
remains unchanged through out the exploration even if there 
are competing contradicting constraints present. Design drivers 
are constraints that are challenging enough to require a design 
innovation to satisfy them.  The developability of the paper cone 
in the double curved roof study is an example of design driver. One 
could have explored other ways of approximating a double curved 
design surface but the developability constraint was chosen as the 
focus of the exploration. For the vehicle design study the design 
driver or main constraint was the idea of an articulated body. Most 
other design development was derived from this constraint

3.5.1	 Bidirectionality in constraint modeling 
To be truly supportive of design exploration, constraint solvers 
need to be bidirectional (Mahdavi et al 1997). This means the 
constraint network cannot be implemented as a hierarchically 
structured dependency tree that allows only propagation of effects 
towards the tree leaves. A graph requires a more general definition 
of part relationships since the possibility of cyclic dependencies 
exists. The circular nature of the network and the possible reversal 
of the propagation direction along the links requires the use of a 
bidirectional solver.
Constraint explorations are often only analytical in nature, meaning 
that a change in a parameter will produce a result but the result can 
in turn not be used as the driver to continue the exploration. In 
contrast, a classic example of bidirectional exploration of a constraint 
network is graphic statics (Zalewski and Allen 1997), where a 
force polygon is linked with a form polygon through geometric 
constraints and change can occur in both the form polygon and in 
the force polygon. This allows for the exploration of either form or 
force while each change in one representation affects the results in 
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the other through the graphics statics constraints. When the form 
and force network becomes more complex, the mappings between 
the two representations are not fully determined as multiple 
solutions may exist for the form polygon for a given state of the 
force polygon. To explore the possibilities it is necessary to use a 
bidirectional solver. Several such tests were modeled using large 
graphic statics system modeled in CATIA®‘s sketcher environment, 
which features a bidirectional solver.

3.5.2	 Translation between design representations
The translation between different modes of design representation 
may involve a domain shift. As a result, the translation can be an 
incomplete mapping between the different representations due to 
the only partial overlap of their domain-specific information. This 
loss in translation requires a reformulation and a completion of 
the missing information in the new domain and is a key trigger for 
innovation. The reformulation forces the designer to re-describe 
the approach in different terms; often he or she discovers the core 
qualities of the project in the process.

3.5.3	 Translation model
The translation model is an externalized intellectual, computational 
or physical construct that can relate design constraints in one 
representation to design constraints in the target representation. 
The majority of engineering models are analytical in nature. Their 
mapping occurs in a one-directional manner from one design 
representation to another. A classic example is structural analysis 
where the analysis of the form of a design produces a representation 
of the design in terms of forces. The translation is unidirectional. The 
force representation in isolation does not allow the reconstruction 
of the form if the process is inversed. The translation only works 
in one way and makes design exploration involving the different 
domains difficult. In contrast, the ideal translation model allows for 
bidirectional mappings between the design representations. It is 
suggested to instead define a translation model as generating a 
new design representation by carrying over the constraints rather 
than translating the representation.
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3.5.4	 Bi-directional models
The condition of bidirectionality is a reappearing challenge 
throughout the examples in the thesis. It is often mistaken as a 
lesser version of multi-directionality. However, it does not refer to 
connectivity in a design topology, but rather to the property of the 
translation model. Bidirectional stands for the translation in both 
directions without preference for one over the other. The network 
of interlinked design representations can go beyond that of a 
pair of domains described above. In fact, most design problems 
are circular in their cross dependencies, meaning the chain of 
influences wraps back on itself.

3.5.5	 Circular dependencies in design problems
Circular dependencies are far harder to explore than non-circular 
ones due to the feedback loops among the different representations. 
Most designs rely on a number of interlinked representations linked 
by constraints shows how the different design representation in a 
chair design can be split up into design driver, implementation and 
representation and how these are interlinked though constraints. 
They create a complex construct even for relatively simple 
design problems such as the chair shown here. Externalizing and 
describing these constructs is a major part of the design process. 
The exploration of variants is based on this externalized construct. 
This construct is being referred to as design explorer, which differs 
from the definition of design explorer given in Gross (Gross 1985)

3.5.6	 Geometry and design exploration
Geometry is the main vehicle for design representation. In many 
cases, geometric design representations work successfully across 
different domains, and the ability to represent design in multiple 
domains is crucial to allow for design exploration.
Geometry is a very powerful representation format. It covers a 
wide range of design representation from descriptive geometry 
to abstract visual shape, but it does not cover all design 
representations. The translation of other design representations 
into a geometry format is not lossless. Geometry’s central role is 
further strengthened by the support of digital design environments 
that are based on geometry. The underlying math is robust and 
straight forward to implement and acts as the backbone of 
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geometric design representation. Geometric procedures in the 
form of tools in design environments can influence the choices 
designers make in their design representation. The integration of 
non-geometric design components into a central geometric design 
representation requires models of translation. Developing such 
models by extending the digital design environments is becoming 
increasingly popular among designers. One reason seems to be that 
many students and practitioners have reached certain fluency with 
the existing tool sets and strive to distinguish themselves through 
customized design processes. These can be created through 
scripting or programming extensions of commercial programs. 
Programming therefore is becoming an important skill to create 
one’s own, design-specific digital context. Geometry may still serve 
as the output of the design, but the design representation shifts, at 
least partially, into the realm of programming.

3.6	 Conclusion
The case studies show the combination of a number of established 
computational principles such as genetic algorithms, parametric 
modeling, and graphs in support of design exploration. Ideally, the 
modules that implement such computational models would be 
more easily accessible and combinable in the design environments 
in use today. Some computational design environments are 
developing in this direction, most notably processing by Ben Fry 
and Casey Reas Fry and Reas 2006) (Fry 2004).
A bigger challenge for future work lies in the development of solver 
architectures that support constraint resolution for non-geometric 
constraints reflecting the heterogeneous nature of design 
problems. Constraints exist in many forms and there is no master 
model that can incorporate them all, but improving the bridges 
between different isolated constraint models could improve the 
availability in design.
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A fragment of the Difference Engine 
No. 1 (1832)
Image: © Science Museum, London. 
Science & Society Picture Library

4	 Simulation, Surface, System, and 
Search 

This chapter explores four concepts fundamental not only to the 
work in this thesis, but to digital computation in general. Their 
evolution and current use are outlined to provide a background for 
the experiments discussed in the following chapters. To begin, it is 
worth reconsidering the evolution of the digital medium.
The digital medium has gone through several stages of development 
in maturing into what it is today, and it continues to evolve. In 
its early phases, its mainstay was that of scientific and military 
calculations, very much perceived as the industrialized version 
of the human “computers” doing the labor-intensive calculations 
needed for a society that rapidly developed commerce, shipping 
and industry. Tide charts, navigation tables, or accounting were 
all tasks early digital pioneers envisaged machines to take over 
and many of the organizational principles of reducing complex 
calculation to addition and subtraction that could be performed 
by common people laid the foundation for modern computing 
architectures.
But all early computation devices were purpose-specific machines, 
and all were analog, mechanical machines closely related to their 
mechanical cousins, the mechanical looms and the steam engines. 



80

Where was the transition to digital computation? Technological 
development was not the only hurdle. There was also a cultural 
hurdle in recognizing available technology for a new use. Despite 
early pioneers like Charles Babbage there was little development 
in mechanical calculators. The theory underlying Boolean logic 
and eventually all digital processes had been defined long before 
the computation field realized its significance for general purpose 
machines. This shows that significant breakthroughs do not rely on 
a single factor, and might be delayed for decades, even a century, 
despite the presence of all the essential technical components, due 
to lack of understanding or appreciation of the culture the processes 
take place. Charles Babbage’s visions of computational machines 
and his first prototype of the Difference Engine in 1832 and the 
Analytical Engine in 1871 are such examples (Hyman 1982). This 
phenomenon does not seem to be particular to modern times, but 
seems to run through the history of civilization in the development 
of most aspect of modern live starting from agriculture to industry 
(Diamond 1999).
So what catapulted digital computation devices from marginalized, 
cumbersome, and immensely expensive research devices into the 
digital computation mainstream of today? 

4.1	 Simulation
Accounting and business applications, as well as word processing 
certainly played a mayor role in fueling the development of the 
early generations of hardware and software. But at that point after 
a long slow development period from the 1940’s through the war, 
computers were not yet a mass phenomena and far from their 
ubiquitous presence of today. What seems to have had the biggest 
impact in their later explosion was the development of digitally 
based simulations. These were made possible by the intersection of 
several factors: the development of the scientific principles required 
to construct the theory and underlying models of simulation; the 
development of hardware enabling real time simulations; and, most 
importantly, a society with problems where simulations could make 
a significant difference in predicting or testing complex scenarios, 
including weapon development, starting in WWII, air plane design, 
the automotive industry and science. The computer game industry 
followed with a slight delay. Today, its economic power is a major 

Ivan Sutherland operating his 
application Sketchpad.
Image: © Sun Microsystems
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factor in pushing the hardware development for a mass market.
The field of architecture, once at the forefront of the development of 
simulation with perspective depiction in the Renaissance, today is 
largely riding along, benefiting from the developments in computer 
hardware and software development, driven mostly by engineering 
and science. Still, significant contributions to the development of 
computer aided design have come from architects. In 1963, Ivan 
Sutherland’s first parametric software foreshadowed most of the 
principles of interaction of today’s computer applications, namely 
parametrics and vector-based design representations on visual 
displays (Sutherland 1963).
The main point in this section, however, is to point out the 
significance of the concept of simulation for working with a 
disembodied digital medium, which posed and continues to pose 
as much a technological as a cultural challenge for the culture 
of design. To embrace simulation and drive it beyond its role in 
replicating what surrounds us, is a challenge that has not been 
met. 
For design, especially in the architectural context, the early 
beginnings were very promising as they coincided with an 
immense optimism about the potential of the emergent medium 
in all disciplines. The early adopters were few but capable and faced 
little precedents to influence their choices in the young medium 
at least in their domain. The influences therefore came from other 
fields more than from within in terms of computational models. 
Expert systems, developed in the young discipline of artificial 
intelligence, were adopted by many in guiding design systems in 
digital forms. Simulations focused mostly on the abstract design 
process, fittingly to the performance ceilings of the computers at 
the time. In a way, this was a good thing as it focused the efforts on 
what turned out to be the hardest problem of all, both in artificial 
intelligence and in the design disciplines: on how the mind works. 
In the following decade, with the increase in computing power, the 
attention shifted towards the visual, and simulation became more 
and more synonymous with the recreation of perspectival space as 
a stand-in for reality. 
Simulation in architectural design became increasingly synonymous 
with producing an image of three-dimensional space. The image 
was created from a geometric model of the three dimensional 

A computer controlled sail making 
drum by ©Northsails using computer 
numerically controlled arms to lay 
down strands of carbon fiber along 
the lines of force. The technique is 
called 3dsl. 
Image:  © Northsails
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space, geometry, used to capture and represent design. These 
dependencies became the main driving force of architectural 
design in the digital medium. In connection with the increasing 
performance of computational hardware, which seemed to feed 
off of and at the same time feed an ever increasing demand for 
speed, architectural design became driven by the pursuit of 
photorealism as the ultimate goal. Needless to say, this goal was 
achieved at the visual level, but at the expense of the development 
of simulation in other domains. Performance-based simulations 
may be the big exception, since they were catered to by the 
engineering disciplines, driven by the pursuit of perfection of 
numerical data and its visualization. The reign of visual simulation 
came largely at the expense of theoretical developments, and at 
the expense of software development catering to the simulation 
and implementation of the design process as a computational 
process. 
To summarize, the dominance of equating simulation with 
image production has left geometry as almost the sole design 
representation in the digital medium. While being immensely 
powerful as a representational format, it is not versatile enough to 
capture all aspects of design. Alternative design representations 
have developed at the periphery of geometry at best, but do 
not play a major role in digital design systems. Of course, these 
shortcomings go beyond the development history of computer 
hardware and software. Images are treated as product but not as 
input, despite there importance in design. The shortcomings relate 
as much to the theory of image recognition and processing, as to 
the lack of understanding how our own visual perception exactly 
works and computes.
Closely linked to the rise of geometry, fueled by the allure of the 
image, is the role of Surface. 

4.2	 Surface
A surface is a geometric concept as abstract a geometric entity as 
a point or line, the basis for simulation as discussed above. Where 
does the concept of a surface originate? 
The concept of surface became important in the development 
of representing and rendering in computational geometry. In 
computational geometry, everything that relates to visualization 



 83

operates through surfaces.  Design representations are altered 
by the need to visualize them, as in the tessellation of geometric 
objects for the sake of calculating ray surface intersections and 
surface incident angles for visualization. Most importantly surface 
functions as the carrier of textures in light simulations. The topic 
has been discussed extensively, both in computer graphics and 
in design culture. But a relatively recent trend in representation 
has been digital fabrication, which has taken over the spotlight of 
interest from visualization. Curiously enough, the surface continues 
to play a major role. In fact, the role of geometry, and the role of 
surfaces in particular, have strengthened in fabrication, as the 
demands on precision and on the control of geometric features has 
dramatically increased in comparison to visualization.
The rendering pipeline with its homogenous digital, internal, 
predictable and repeatable process chain ending in a pixilated, 
digitally fixed resolution image is far from the messiness of the 
digital fabrication process. The introduction of material and 
computer controlled machines breaks out of the fully enclosed, 
digital-only environment. Fabrication challenges the current role 
of geometry as a static design representation due to the simple 
fact that the digital model does not equate the model fabricated 
on its basis. Many problems remain unresolved by necessity: the 
prediction of the behavior of material is difficult. This addresses 
the issue of design translation, necessary when moving from 
one design representation, the digital- geometric, to another, the 
physical-material. The concept of surface plays a major role in the 
understanding of, description of and prediction of both. 
Some might point out that this argument is failing to address the 
development of solid modeling in the last decade or so. In fact, 
even solids are represented through surfaces, not in all cases 
computationally, but certainly visually. 
Surfaces in design representation and in the digital tools that 
operate on those representations are prone to misunderstanding 
from the fascinating ambiguity of the concept of surface. It is an 
abstract construct, but through the development of rendering it has 
acquired a quasi realism as an object, because it can be seen and be 
dealt with although it has zero thickness or encloses an imaginary 
volume in form of a solid. This perception of surface as object is at 
the core of the many challenges of translating geometric surface 
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representations, which includes geometric solids, into physical 
space. It is hard to believe otherwise that the computer controlled 
manufacturing had evaded architects for decades as the next big 
thing if it had not been for the fascination with surfaces in relation 
with images driven by the longing for simulation of a visual reality. 
Only now that the visualization run is coming to a level of maturity 
does the focus shift. But interestingly enough it is not shifting the 
notion of design representation, it is still geometry at the core 
and more than ever surfaces that carry the main load of design 
representation. Even the occurrence of scripting and programming 
is almost exclusively focusing on a descriptive of geometry 
generation, little different from the manual process of creating it 
through the interfaces. This is understandably since most designers 
have been introduced to the medium from that perspective, know 
the medium as a black box and judge the accomplishments of their 
peers through what appears hard for them. A script that generates 
thousands of varied elements in seconds is overwhelming when 
one judges it from the manual investment necessary even to create 
a fraction of it by hand. Computer graphics approaches the medium 
and the generation of geometry very differently. Programming 
is used to create geometry from first principles; it is generative 
from a procedural approach and does not tend to occur through 
the interface of tools conceived of to be operated manually. For 
instance a irregular triangulated mesh is not only inconceivable 
to generate manually efficiently but also a simple additive process 
would make little progress in creating whereas a procedural 
algorithm using recursion based on a mesh creation principle can 
produce infinite variations of in the most general way.
But these abstract computational principles are hard to match with 
physical based constraints of materials and fabrication procedures. 
They require once again models of translation. Interestingly 
fabrication spurs the interest in these models of translation and 
alternative design representation to static descriptive geometric 
one much more than rendering ever did.
What are the surface conditions that occur in design and are of 
interest at the borderline between design representation and 
the physical and also responsible for many of the frustration in 
designing with today’s digital tools and possible the motivation for 
a designer to expand their skills and understanding of the problem 
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phenomenon and surface as artifact.

4.2.1.1	 Surface as object
A surface, in the geometric sense, is an infinitely thin, continuous 
construct in space. The visualization in digital modeling applications 
presents the surface as object. This leads designers to use surface as 
object, in the literal sense, and to believe in its objectivity because 
it is visible as an object in the simulations. While offering a powerful 
array of surface-based design processes, the objectification of 
surface is responsible for much of the frustration we see in digitally 
based design today, as it disrupts the translation of abstract surface 
into physical implementation. The notion of surface as object also 
partially explains the love affair of architecture with visual media, 
since it allows for an extended honeymoon between the surface 

“You cannot escape from a 
submarine”- surface as object 
example from a design studio project 
by the author. The surface describes 
a non object which evokes volume 
where there is only self intersection.

and change it.

4.2.1	 Surface themes
Surface as a theme in design has many roots in everyday experiences 
and other disciplines besides design. Some of these themes 
are expanded here based on past experiences and frustrations 
with surfaces and also based on the tension between surface as 
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object and designer. Images are simply more forgiving than 
physical space.

4.2.1.2	 Surface as image
Every image is based on a surface of some kind, be it paper or a 
screen. Surfaces are carrier of images. Any portrait or depiction 
relies on the collapse of its higher-dimensional information into 

Perspective construction of images in 
two dimensions is only one of many 
models to reduce higher dimensional 
space to a two dimensional image. 
Surfaces act as the carrier of images. 
Self Portrait 2002, Axel Kilian, 
composite of 14 image slices. 
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two dimensions.  

4.2.1.3	 Surface as texture
Through the dominance of rendering as a visualization technique, 
texture mapping has become the prime process of applying images 
to surfaces. Texture mapping refers to the spatial positioning of a 
desired image on a surface, a sophisticated form of photo montage 
using surface bodies rather than flat cut outs as a carrier. This process 
has lead to the widespread representation of design objects as 
surface constructs, rather then as lines or solids. In a design culture 
focused on the production of images, surface constructs offer the 
fastest and most flexible return. The examples in animals are far 
superior in their embodiment of texture in the skin. The example of 

Cuttlefish are, despite their relatively 
small size of about 10 inches, masters 
of disguise. Texture in some animals 
like the cuttlefish show variability 
both in color texture and bump 
textures as well as animated texture 
changes. This level of surface as 
environment mirror has not been 
reached in man made objects. 
Responsible for these changes are 
the chromapores in the skin of the 
cuttlefish.
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geometry. In a way, this history lays out the physical precedents 
of digital texture mapping. The craftsmanship that went into the 
construction and decoration of armor can compete with much of 
today’s industrial design, and is far superior to any façade details 
found in architecture. The sophistication of expression and the 
fusion of form and function within the constraints of the time 
is a great example of surface as craft. There is no technological 
determinism in the development of sophistication but a parallel of 
multiple lines of investigation and expertise, some technological 
driven some not. The maturity of a field of study can have an 
equally important part in the sophistication of its solution as its 
technological development. In armor the refinement of surface 
detail and response to the complex curvature of the body, 
in combination with its protective function, makes armor a 

Armor is an early design example 
of surface craft that responds to a 
multitude of competing constraints. 
In the armor one can read the 
form of the body, the constraints 
of the material, the constraints of 
articulation pieces and the desire for 
ornament. There is no technological 
determinism in the development of 
craft. Skills are lost or go out of style.

the cuttlefish proves this

4.2.1.4	 Surface as craft
There is a long history of surface based craft. Surfaces function as 
the carrier of ornament in an interesting variant to the texture of 
animals. Particularly armor and clothing triggered this craft long 
before a technological driven understanding of material and 
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formidable example of surface-based craft. This is not at the scale 
of architecture, but the example of the evolution of armor surfaces 
stands as a reminder that progress is not certain through the use 
of novel tools but also through the constant refinement of what is 
there. Also the principle of design surfaces as the underlying guide 
for the creation of geometric components is closely related to the 
production of ornament, which is also carried by the underlying 

surface. Its digital version is the natural extension of texture mapping 
in the visual to component mapping in the spatial constructs and 
through fabrication the physical.

4.2.1.5	 Surface as solid
The surface that is revealed in the subtractive process of sculptures 
is a different one from the objectified surfaces of digital modeling. 
The surface of a solid stone is the temporary boundary between 

Surface as solid in the example of 
a Mayan sculpture. The surface is 
only an intermediate state in the 
continued removal of material.
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material and air certain only in the fact that nothing can be added to 
it anymore once it is removed, which makes sculpture so absolute 

4.2.1.6	 Surface as assembly
The use of a wide variety of materials and the increasing engineering 
optimization of high performance constructs like planes and cars 
leads to collages of materials and assemblies that are unified by 
little more then their structural integrity and the continuity of their 
perceived geometric surface whole.  In the case of the material 
patchwork of a modern plane the paint coating proves essential 

The surface acts as a unifying factor 
in heterogeneous assemblies such 
as that of an airliner. Homogenous 
surface allows for unifying paint layers 
that reinforces the impression of  the 
assembly as a whole.
Image: © Christophe Ena/AP
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not just for functional reasons but as a unifying mode actuating the 
geometric continuity over the material discontinuity. 

4.2.1.7	 Surface as boundary
The image of a snow drift in the courtyard of a building exemplifies 
surface condition as a boundary between to shifting aggregate 
in this case water in the form of snow and air and how the forces 
of the wind create ever changing constellations and boundary 
surfaces between the two. Here surface is a constantly forming 
and disappearing condition neither object nor state but that 
what is at the foremost boundary at the division between the two 
substances. This condition makes the topologic description of the 
surface far more complex as it is an emergent property rather then 

In a shifting medium such as 
sand or snow or water, surface is 
a intermediate state of boundary 
between different substances. 
Surface is most abstract here as it is 
temporary and constantly evolving. In 
fact each surface change affects the 
forces shaping the surface itself.
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one that could be described and therefore object based modeling 
approaches are likely to fail in capturing the phenomena.

A mesh is a variant of an assembly 
based surfaces. Meshes are fascinating 
as they embody surface through the 
constant deviation from the ideal 
surface. Surface emerges as the 
average of the sum of the strands of a 
mesh or weave.
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4.2.1.8	 Surface as mesh
The accumulation of parts in close formation can evoke surface like 
readings like in chain mail or fences. Here it is the emergent reading 
of the overall trend in the parts that signal the surface character

4.2.1.9	 Surface as politics
Choice of surface panelization conveys a message and in the case 
of maps has always reflected the political view of the map maker. 
The dimaxion map by Buckminster Fuller was his attempt to 
provide a more realistic view of the geographic landscape in the 

The act of unfolding and unrolling 
of geometric objects into planar 
surfaces are conscious acts. Surface 
choices can reflect politics as it is 
the case in the difference between a 
Hobo-Dyer equal area projection of 
the globe and Buckminster Fuller’s 
dymaxion world map. One preserves 
areas the other one distances and 
local connections. 
Fuller created the dymaxion maps 
so they can be reconfigured in 
many ways by moving the triangles 
around. The shifting of the view point  
supports his one ocean theory of the 
disappearance of political boundaries 
and artificial divisions of the worlds 
oceans when the world is viewed 
from space. 
The classic world map such as the 
Hobo-Dyer projection or the Mercator 
projection stem from a Europe centric 
culture of viewing the world.

Image: http://www.odt.org/freehdp.
htm
Image: Buckminster Fuller Institute 
http://www.bfi.org/
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light of the cold war threat in placing the north pole as the shared 
neighborhood in the center of his triangulated globe unfolding as 
opposed to the Hobo-Didier projection with its maximal distance 
based on the equatorial distance between the then super powers 
USSR and USA.

4.2.1.10	Surface as structure
Curvature in surfaces provides a structural potential. But the form 
is constraint to the interdependency of material resistance to 
tension and compression, weight and local and global geometry 
of the surface.
Structural shells have a rich heritage in engineering and architecture 
but their formal vocabulary has been relatively limited and maybe 

Surface can act as a structural 
member  as in the Anish Kapoor 
installation at the Tate Modern in 
London in 2003 (In collaboration with 
Cecil Balmond) and Arup. The tensile 
membrane was engineered to be in 
constant tension
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overly emphasizing structural optimization over architectural 
expressiveness and variation. With integrated digital design tools 
this potential could be tapped even in less pure forms and surface 
geometry.

4.2.1.11	 Puzzle surface 
One way to tap the potential of surfaces is in overcoming the 

dimensional standard and moving towards a negotiated one. To 
define standard on geometric terms should be replaced with a part-
to-part adaptation that fits the necessary aspects of the parts to make 
them interface correctly for whatever role they need to interface in. 
This might be a structural, compositional or aesthetic interface, or 
one of surface continuity. In a generative approach combined with 
fabrication machines, it may be possible to overcome the notion of 
standardization established in the industrial revolution and return 
to a more design-based resolution of detail. A big challenge in 
achieving this goal is the management of the resulting variety of 
parts and the robustness of the interface definitions as the range 
of functioning connections is far more challenging to test than a 
single constraint case. The jigsaw puzzle surface shown here was 

The puzzle surface approach that uses 
locally geometrically adapted joint 
details to connect surface strips via 
pressure fit.
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produced using a simple generative script that translates the local 
geometry of the design surface into connecting interlocking pieces 
on both sides of the strips, matching across the connection ridge.
The performance of such a connection is dependent on the 
material and fabrication approach used as well as on the local 
geometry condition. Increased curvature across the ridge line may 

lead to curvature changes from strip to strip that are too large to 
handle for the joint. In that case, the interface negotiation has to 
control more than just the local interface and influence the overall 
arrangements of strips on the surface.

4.2.1.12	Performative surfaces
A surface itself can function as the performative envelope, as 
shown in the example of a kite used for kite surfing. Here the 
surface is not used as the carrier of secondary geometry, except 
for the air frame, but is the performative surface itself. Its profile 
and overall shape are not only controlled by the geometric pattern 
that defines its default shape, but by the very forces it is generating 
as a wing during flight. The relationships are quite complex as all 

Kite surfing wing as an example of the 
geometry of a design being subjected 
to various forces that affect its actual 
shape. This literal performative 
example has many variants in more 
abstract terms. Form is subject to 
change both in abstract and literal 
ways from various constraints. An 
equilibrium is always temporary.
Kite by the author in test flight.
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factors influence all other factors. The profile affects the lift and 
the drag. The drag and lift affect speed, which in turn affect the 
profile again and result in additional forces going into the overall 
arch. The kite arch finds its form in flight, and that shape is only 
remotely related to the design shape in the geometric program. 
This interdependency is very apparent in the kite example as it 
is determines whether the kite will fly or not, and is resulting in 

a visible change of shape. It makes clear how critical it is to test 
an assumption in practice to evaluate its validity. Teaching one’s 
findings add another level of evaluation. At architectural scales, this 
deformation and the cross dependencies are less obvious and not 
all linked to the shape domain alone. But a key element one can 
take away from the kite example is the idea of a design surface. 

4.2.1.13	Parametric descriptions of a design surface
Parametric descriptions of surfaces introduce the notion of a 
design surface that carries secondary design features. A hierarchical 
parametric construct controls different levels of parametric 
components that control the overall composition of the shape, the 
parts and ultimately the components itself. 

The principle of design surfaces as 
hierarchical control mechanism.
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4.2.1.14	Layered parametric constructs on design surface
The integration of multiple parametric dependencies into one 
parametric surface component is one approach to deal with the 
complexity of a design. In this example, the component allows the 
response to sunlight and gravity as well as to the local geometric 
context.

4.2.1.15	Design surface as an architectural design approach
The notion of a design surface has become a prevalent design 
driver in architectural design. (Venice BIENNALE 2004, Surfaces) 
The competition entry for Museo Costantini in Buenos Aires was 
premised on a building-sized wave as a design surface.  The curling 
up of the plaza to a wave allows the capturing of the urban plaza 
with the modest scaled museum on one end and the open plaza at 
the other. The surface acts as a sign and as the program interface 
between the public space of the plaza and the museum spaces.
Representing such large-scale design surfaces and the resultant 
volumes has always been a challenge in architecture. Volume is 
rarely solid, but rather implemented through enclosure. Slicing 
these volumes into cross sections is a common approach in 

Surface as design driver in 
architecture. Competition project for 
Museo Costantini in Buenos Aires, 
competition entry 1997.
 

The project was exhibited at 
the 2004 Venice Biennale in the 
category “Surfaces”.
Project credit: Axel Kilian, 
Juergen Mayer Hermann, Bettina 
Vismann
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translating free form volume into buildable form. The example of 
a popular dinosaur model clearly shows the approach, if only for a 
skeleton. In contrast, the volumetric model employed by another 
dinosaur toy, although more technically advanced in its production, 
does not result in more expression than the abstracted, sliced one. 
An advancement of the technique alone does not mean that there 
has been any advancement in the overall design. This becomes 

clear when looking at the sculpture by Naom Gabo, which with 
a minimal use of surfaces pieces captures the essence of the 
volumetric expression of the portrait. Construction is not only 
technique but expression, not only structure but representation of 
an idea.

4.2.2	 Surface strategies 
There are different approaches to integrating material properties 
into geometric surface representations. They are:
•	 Realism. Realistic behavior is the goal of engineering applications. 

Realism refers here to the structural behavior of a material, like its 
bending resistance, tensile and compressive strength, or the dampening 
characteristics. Although those parameters are crucial for engineering 
considerations, they are not necessarily fundamental to a material-

The veil like wave surface bundles 
a program of ascending exhibition 
spaces. The urban concept develops 
the building out of rolling up the 
public plaza and activating the public 
space through the monumental wave. 
The exhibitions stack behind the 
face of the wall as if responding to a 
ground swell.
Project credit: Axel Kilian, Juergen 
Mayer Hermann, Bettina Vismann
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based design approach.
•	 Abstraction is a design-specific, approach to material which tends to 

be very selective in terms of material properties. Quantitative accuracy 
may be of less concern than qualitative components of the material 
studied. This might be its texture, it’s bending resistance, the way it 
sounds, feels or its grain pattern appears. In short, the representation 
of the material might be any number of abstracted properties of a 
very large set of materials, which makes it hard to provide a holistic 
simulation library. 

Early experiments, started by the author in 1999, were based 
largely on the abstraction model. The experiments involved 
programming spline surfaces based on eight control handles that 
provide incoming and outgoing slopes for a spline surface patch. 
The surface patch was used as the design feedback object. The 
surface provides straight forward visual feedback on the spatial 
state of the object. The motivation was to implement a physical 
sketching tool for physical three-dimensional surfaces from the 
combination of a programmed interface for surface generation 
in Autolisp in AutoCAD, in connection with the laser cutter as the 
physical output device.
The goal was to work with this combination alone and capitalize 
both on the generative potential of programming and the flexibility 
of the fabrication equipment in precisely cutting any flattened 
geometry. From my experience in fashion design and sewing from 
a decade earlier I was very familiar with the concept of pattern 
making and the assembly of spatial constructs from planar surfaces. 
In this spirit I approached the problem and followed an isocurve-
based subdivision of the spline surface into single curvature strips. 
The Autolisp program unfolded the resultant surfaces through a 
triangulation procedure to the main plane and equipped the strips 
with a jigsaw puzzle adaptive detail. 
The idea of the jigsaw like puzzle was twofold: 
One, it provided an assembly logic which would register the edges 
of the corresponding surfaces strips precisely against each other 
without any measurements or particular care required.
Second, it implemented a connection which requires in the ideal 
case no additional fasteners but relies on the capabilities of 
the programming-fabrication link in producing the connection 
geometry as an integral part of the production, not unlike the 
traditional Japanese wood joinery.
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Both goals were fulfilled in several of the prototypes, although 
the connection part was susceptible to failure depending on the 
cutting tolerances and the material and geometry of the shell.
This cross dependency initially seemed like an undesirable side 
effect of a not fully described and controlled, i.e. abstracted system. 
The material properties had not been made part of the generative 
process and therefore deformations due to the resistance of the 
material could potentially deform the joints in a way that they 
would fail.
Several attempts were made in trying to optimize the geometry and 
to make the behavior of the assembly more predictable. Variations 
in material, geometry and fabrication techniques allowed a more 
rationalized view of the cross dependencies.  The factors are cutting 
depth, cutting surface related to the fabrication process, material 
thickness, material grain, and geometry of the overall target shape, 
scale of the overlap of the joints, local curvature conditions at the 
joint.

4.2.2.1	 Feedback and cross dependencies
This condition points to a feedback effect between designed 
geometry and actual geometry of a physical assembly. Most 
building systems are carefully designed to minimize the cross 
influences between different components in order to avoid 
unpredictable results. This conservative strategy makes sense in a 
practice divided by discipline, which is overwhelmingly the reality 
of today’s construction. Traditional craft, with its less complex 
projects at a more manageable scale, takes much more advantage 
of the secondary effects between material and design for instance. 
For instance, weaving a basket can be a highly precise task. But the 
positioning of the strands with respect to the targeted form will be 
variable as a response to the local and global material properties 
in connection with the weave and the fluctuations of the natural 
strands used. So here detailing is a process in constant adaptation 
to a desired goal. It cannot be planned out a priori as geometry, 
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but rather is the result of as sequence or pattern, which essentially 
equals the topology of the weave.
How is it possible to get to such a level of fluidity in architectural 
design? The tactile, manual labor of basket weaving does not easily 
scale and therefore cannot be literally applied to a large project. The 
idea, therefore, would be to find a description which is responsive 
to the circumstances it is applied in, rather than to create a scaled 
version of a weave. These would be components that are created 
on the fly based on their geometric context, or which have enough 
degrees of freedom in their assembly to accommodate for any 
deviation from the target shape.
The thesis develops a number of approaches that replace the 
tactile manual response in the adjustment of a flexible system 
with computational, more abstract systems that allow adaptive 
systems to function by embedding properties in the geometry of 
fabrication. The first one is the previously mentioned jigsaw puzzle 
surface approach, where the translation of the geometry happens 
through the application of a joint detail.

4.2.2.2	 Control of the surface
The example shows a corner based tangency controllers approach 
for the surface patch. This is a light weight approach to surface 
control that offers robust interaction and fair curved surfaces 
due to its low degree surfaces. Due to its four control points, 
the curves have order four and degree three at a maximum. 
The implementation is done using degree two, with a quadratic 
polynomial equation.
Achievements were the linking of generative programming with 
fabrication with a material sensibility and assembly procedures 
implemented.
Problems were the propagations of deformations through the 
assembly potentially causing joint failure when the parts were 
being assembled.

4.2.2.3	 Control of a complex geometry with embedded 
properties

Parametric surfaces can be controlled and generated in a variety 
of ways. The control mechanism and the structure influence the 
possible results. Similar to any complex device the controls are 
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ideally high level and have a certain level of abstraction to allow 
for control of a complex entity through few parameters. Below 
the abstract top level of control can be a set of controls with finer 
granularity, which regards sub parameters of the surface. Similar 
control systems can be found in kite surfing control rigs where there 
are primary controls that ensure the shape of the tensile structure 
is stable and the load transfer takes place and on top of that. 

Reigns for a horse are a similar case. The reigns don’t control the 
horse directly, they just provide the input for the horse to interpret 
the situation and act accordingly. Of course, these are far more 
complex organisms and mechanisms that the average parametric 
NURBS surface.

Surface based louvers responding 
with variable aperture to the global 
lighting condition and the local 
surface context.
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Other models that were developed and explored are 
•	 Hierarchical control rigs for surfaces
•	 Surface growth through Lindenmayer systems (through contributions 

of the author, and a project by the ED Group headed by Peter Testa; as 
well as MOSS by Testa, O’Reilly, Kangas, Kilian)

•	 three-dimensional printing of volumetric assemblies

4.2.3	 Surface controls – the design surface 

principle
The following examples discuss how a wire frame skeleton similar 
to a control polygon can serve as a robust and visually traceable 
control mechanism. The control rig externalizes the dependencies 
in their geometric context.

4.2.3.1	 Experiment 1: Component-based surfaces, bottom up 
control

The ZOOB© toy was used to construct surface grids with bottom 
up control. The surfaces that can be are a function of the degrees of 
freedom of the components and their assembly patterns. 
A component-based surface emerges from the assembly of 
elements. The exploration range is very limited, but results from 

Bottom up component based control 
of surfaces. In this case the zoob© 
system was used to construct part 
based meshes that respond within 
the constraints of their movements to 
control input.
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local part interaction and affords a certain global redundancy of 
control from the multitude of parts working together to form the 
whole. The degrees of freedom of the assembly logic determine 

the possible shapes in a bottom up rather than a top down fashion. 
Digitally, this sort of assembly requires a constraint solver for 
the non-hierarchical modeling of the unit interaction, collision 
detection, and for imitating the movements. The example was 
used in teaching to explain constraints of system based building 
components and as an example of assembly based construction.

4.2.3.2	 Experiment 2: Hierarchical, parametric, top down 
control

This example shows a control rig for a NURBS patch surface with 

Top down surface control through a 
control polygon.
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tangency continuity across the control wires. The topology of the 
first order control polygon defines the features of the surface as well 
as the top level proportional controls governing height, positioning 
and relations of the parts to each other. On the one hand, this 
approach is very limited due to its downstream dependencies of 
all subsequent parts. At the same time it provides a very robust, 
almost sketch-like top down surface definition.

4.3	 System
Systems are emergent organizational entities that go beyond the 
ad hoc decision making of improvisation. A system design has a 
holistic design goal and self-referential dependencies among its 
parts. In a system there can be agreements between parts without 
there necessarily being a direction connection. Parts are compatible 
by agreement to conform to a system. This is true not only for 
physical implementations, but reaches into software systems as 
well. Systems also have a certain self-perpetuating dynamic. Once 
they exist they tend to grow and incorporate more things not 
part of the system originally. Standardization is a good example 
of a system of regulated norms that ensure compatibility. Building 
systems in architecture have a long tradition. System standards for 

The evolution of the LEGO super car 
series from 1970-2000. Over the years 
the models increasingly depart from 
the simple block system towards a 
post rationalized building system.
Images LEGO.com and http://www.
nd.edu/~lego/grp2/www/techlst2.
htm

Technical abstraction of the idea of 
car conforming to the system”

Introduction of pixelization of non 
orthogonal elements

First attempt to representing form 
and not just function

Fading of the block systems in favor of 
a shape derived post rationalized one

Shift in granularity over shift in system 
for approximation

Polygonal use of building elements to 
approximate curves

1970’s 1980’s 1980’s

1990’s 2000
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bricks evolved first before being formalized. 
Of more relevance for the subject of the thesis are the cross 
dependencies between building and design systems and design 
goals. A structure built in brick will have a different structural 
language than one built in steel. It is crucial for design innovation 

to prevent systems from becoming conventions which prevent 
the continuous adaptation and reinvention of the agreements 
and norms based on the evolving context. Design exploration 
benefits from generative systems such as software programs or 
programming languages. But these systems have their own system-
inherent limitations that need to be understood in order to avoid 
them. 

4.3.1	 Design goals and system dependencies
To illustrate this interdependent relationship between a system 
and its design goal, car building kits produced by the toy system 
Lego are documented on the basis of advertisement images 
launched between 1970 until 2000. The initial block-based Lego 

Balance between the system 
constraints and  the design goal. 
System inherent form language 
versus design language of the car. 

What is innovative?

The intelligent use of the system 
within the constraints?

The creation of new parts that 
extend and eventually compromise 
the system

Or redefining the scope of the problem?
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system allows only for mostly cubic shapes to be assembled from 
its standard units. The car model is representative of the idea of car 
as a minimal mechanistic block rendition of real cars of the day. 
Over the decades that follow, the block system gets increasingly 
more diverse. The design goal focuses towards mimicking shape 
rather than mechanical abstraction. This reveals the inadequacy 
of the block system for free form cars even more. Eventually more 
and more special form elements are introduced, to a point where 
the system seems to be a post-rationalized product of trying to 
implement the form of a car. One could argue that the expansion of 
the system to better conform to a goal is an innovation. At the same 
time the elegance of the inter-part compatibility is increasingly 
lost. The last image shows a shift in scale of the system-design goal 
relationship, similar to the relation of a brick wall and a concrete wall 
made of “liquid stone”. It is crucial to realize the pressures that are 
exerted by a system of exploration onto the subject of exploration. 
The two are not independent and need to be carefully modeled.

4.3.2	 Building systems and what can be built
A similar relationship exists between most building systems, such 
as bricks, steel beams or glass facades, and design. Languages of 
design develop around systems, such as in the brick Gothic period 
in Germany, with its highly sophisticated brick variations and 
façade patterns. The available system influences architects in their 
designs, and novel designs in turn push the system envelope.
But the system occurrences have by now shifted into the digital 
realm as well. Every software is a system in its own right and 
enforces constraints for the user and provides tools that make 
certain design moves easier than others. Foster and Partners 
follow an approach in their specialist modeling group where some 
project-specific tools are provided to the designers that allow only 
the design of rationalized design geometry, such as fair curves and 
surface patches. This limitation is not necessarily perceived as an 
obstruction as it is implemented through parametric constructs 
that can only be exercised in a pre-rational manner. This approach 
ensures that even in larger teams rules about surface qualities 
and parameters don’t have to be enforced or checked but can be 
assumed to be met based on proper tool use.
Frank Gehry and Partners follow the opposite approach. The 
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design exploration is not conducted with tools rationalized a priori, 
but the outcomes of the design development are rationalized 
later in a so called post-rationalization step. Building systems are 
either developed or existing ones adapted together with slight 
adjustments in the geometry to achieve an economic solution and 
make the design buildable. The truth is, of course, that these two 
approaches are far from pure. Accordingly, Gehry Technologies has 
devised tools that support the translation of the design processes 
most common in the office, such as cardboard-based surfaces.

4.4	 Search
Frei Otto supposedly once said: “I do not design, I search”. This is 
a powerful, statement, and at the same time a very honest one. If 
one truly is looking for novel design approaches, it is unlikely that 
they can be designed in a predictable manner. Design emerges 
through the increase in understanding of a design problem and 
its constraints. To search means to ask the right questions and 
formulate the framework accordingly.
Strategies for search can be embodied in design explorers. Most 
importantly, the ideal search is generative. Rather than revealing 
what it is already known it will create novel findings from known 
starting conditions. This expansion of the reference frame rather 
in place of the exhaustive sifting of its content is what separates 
design as search from combinatory evaluations. To accomplish such 
a search is a major challenge. The fact that constraints are present 
does not provide definitive answers in terms of design solutions. 
Any design proposal that satisfies the given constraints may still 
not fit the design intentions on other accounts not included in the 
initial description of the exploration. This is very common in design 
and in fact crucial to evolve the design target with the investments 
made in the exploration process. 
The search section does not go into depth of more sophisticated 
search processes in design, but rather illustrates a few experiments 
by the author as representations of possible approaches. A large 
area of data-based search is omitted, and the examples presented 
here are not representative of the universe of search procedures.

4.4.1	 Visual search –keeping track of design history
An exploration into the tracking of design history is the multi-
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branched browser history application. It allows browsing expanding 
nodes of a tree-like system based on time and location of interest. 
The amount of time spent on a node is the scaling factor in relation 
with the other nodes. This allows one to quickly find the nodes 
that were previously viewed more extensively. In the example 

Exploration creates a visual history. 
Attention based scaling of the visual 
content creates a record of usage 
patterns.
http://destech.mit.edu/akilian/
newscreens/people/browse2.
browse2.html

shown, the nodes are web pages of People Magazine. Static trees 
have been used extensively in the visualization of data structures, 
even in design software context. The introduction of a multi-
branched design history that is dynamically weighted based on 
the importance or perceived importance of each step is a potential 
improvement. It still leaves some open questions however. The 
example shown here is only a sketch of a possible approach.

4.4.2	 Parametric control objects for design 
exploration

Designing with parametrics poses the challenge of evaluating the 
design range of possible outcomes presented by the parametric 
construct set up for the exploration. Higher numbers of parameters 
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make the interaction with the design construct less intuitive.
The example shown here demonstrates a geometric control object 
to provide parameter setting interpolation and the possibility to 
record and memorize states of the parametric settings for the 
object.
The example shows a family of objects whose parameters are 
mapped to a grid of points that sample a surface based on 
regular UV spacing. Moving the UV grid adjusts the parameters 
and regenerates the object family. By increasing or decreasing 
the sampling rate around the points of interest, one can explore 
parametric variations in more detail where needed.

4.4.3	 Genetic algorithm approach 
Another approach is operating the parameters of parametric 
models through search strategies, for instance simplex search or 
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circular branching parallel

circular branching parallel

circular branching parallel

circular branching parallel

Evolving explorations in the three 
experiments
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The experiments Genetic Algorithms (GA). Genetic Algorithms are essentially search 
algorithms built around a vaguely biological metaphor. But their 
name is misleading in terms of what the family of GA’s is capable 
of doing. Nonetheless, they provide a robust way of connecting 
fitness functions to search procedures. Their modular structure and 
the ability to introduce different translations between genotypes 
and phenotypes make them relatively easy to adapt to different 
design problems.

5	 The Experiments: Circular, 
Branching and Parallel Explorations

Three main experiments were conducted in the framework of 
this dissertation: The Chair, The Car, and the Hanging Model. The 
experiments are in chronological order of when the problem 
domain was first addressed by the author. The surface and material 
based experiments started in 1999, the concept car exploration 
in 2003 and the hanging chain model in 2004. The terms circular, 
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branching and parallel are used to categorize the experiments. They 
refer to the properties of the solution space in relation to the design 
exploration of each problem domain. They do not literally refer to 
the network topology of the links of the design representations. 
A circular exploration, then, refers to the interdependencies of 
design representations and constraints in defining the solution 
space. Circular describes the possibility of feedback loops between 
these representations and constraints, which in turn can create 
circular dependencies. The design goal of the chair experiment, 
which falls in the circular category, was to bring material, geometric 
and fabrication constraints into balance to produce a fabricatable 
prototype.
In contrast, the branching exploration focuses on establishing and 
defining a design problem through connecting different design 
constraints in a tree like fashion. The main experiment conducted 
as a branching exploration was the “Athlete” concept car design.
The hanging model is an example of the third type of exploration. 
The third type, the parallel exploration, finally, refers to a design 
exploration where the design explorer contains a fully understood 
set of constraints that can be exercised for design variations. The 
solution space can expand, but only within the boundaries defined 
by the constraint network. Design variations emerge from the 
parallel interaction between the different constraints. The main 
experiment conducted as a parallel exploration was the hanging 
model. 
The experiments are presented in the order in which the respective 
problem domains were addressed by the author. The surface and 
material based experiments that led up to the chair design started 
in 1999, the concept car exploration began in 2003, and the 
hanging model was started in 2004.

5.1	 Circular Explorations: Refining the 
Constraints

The circular experiments are centered on the integration of multiple 
constraints with the goal of refining their relationship through 
design exploration. The experiments are addressing issues of 
surface and material interaction as well the question of fabrication 
for free form geometries.



 115

5.1.1	 Design Surface Principles 
The preliminary sets of experiments leading up to the chair design 
were all based on the design surface principle. The principle 
is based on design representations that draw from one main 
surface as the guide for subsequent components or details. The 
experiments overlap in part with the conceptual explanations 
of surface in chapter three. The series of case studies for the first 
set of experiments investigate the circular dependency networks 
present when flat sheet based fabrication is combined with curved 
geometry and friction and assembly fit connection details are used 
for assembly.
The appearance of computer numerical controlled (CNC) 
prototyping devices in the architecture studios in 1998 triggered 
the interest in the potential of such machines in a design context. 
Simultaneously the author had engaged in a series of classes aiming 
at learning how to program as the limitation of manual modeling 
and rendering became apparent. The development of design 
specific digital environments seemed crucial for the aesthetic 
development of design. The three dimensional puzzle surface was 
developed as an attempt to develop a digital physical evaluation 
tool using programming to develop an interface to manipulate 
spline surface patches and a laser cutter to rapidly fabricate those 
surfaces. The goal of the assembly detail was to allow the parts of 
the flattened surface to be assembled without additional fasteners 
but rather embed the connection logic into the fabrication of the 
parts. Another aspect of the links was the to make them unique 
such that only the parts that belong together fit together like in 
a jigsaw puzzle and therefore labeling was unnecessary. For the 
scale of one hundred connections this is feasible, beyond that the 
labeling makes at least the rough sorting a lot more efficient.
The joint / surface / programming / CNC method raised questions 
about the notion of an assembly in the context of fabrication and 
the dependency of design geometry and physical output in the 
context of freeform surfaces. Most importantly it demonstrated 
the shortcoming of the established geometry centered digital 
design model. The digitally represented geometry is not sufficient 
in capturing the processes involved in fabrication and material 
forces during assembly, especially not if novel processes such as 
generative design are employed that open up new possibilities 

B-Spline patches as the basis of the 
surface modeler

Eight control tangents define the 
patch. Implementation in AutoLISP

The joint principle: an adaptable 
geometric unit creates an interlocking 
connection that is pretensioned by 
bending across the ridge. 

An assembly of two adjacent strips 
through the  adaptive joint. The 
pressure fit of the joint holds the 
pieces in place. 



116

prototyping, to produce physical sketch surface models. The 
physical surface models were assembled from developable strips 
connected through a puzzle-like detail. The use of programming as 
a design approach allows the generation of connection details that 
correspond to the rules of flat sheet rapid prototyping techniques 
of laser cutting and water jet cutting. With numerically controlled 
cutting there is no need to keep the joint detail related to manually 
achievable forms or to apply a standardized dimension. The goal 
of the experiment, then, was to demonstrate the possibilities of 
programming to generate cutting geometries that adapt to the 
local surface properties. The fundamental questions were how to 
formulate and capture design intention through programming, 
and to investigate the influence of the use of generative modeling 

to take advantage of materiality and context specific geometry. 
(Kilian 2003) 

5.1.1.1	 Experiment 1: Combining Fabrication with 
Generative Design – The Puzzle Joint

The puzzle joint experiment was conducted to test the connection 
of digital modeling with generative programming and rapid 

Puzzle assemblies in different 
materials. Material and fabrication 
technique affect assembly and friction 
fit. Geometry has to adapt to material 
and fabrication constraints.
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within the limitations of the machine. The question is how to 
expand the use of such machines and explore their potential. Two 
possible approaches are
•	 Extract the capabilities of the machine and embed them into a 

generative program that explores the possible forms and cuts within 
the limitations

•	 Design an object and adapt it to the machine’s capabilities
There are always shapes for which a particular fabrication process 
works well and other shapes that need to be redesigned in order 
to be fabricated efficiently. As in conventional craft and manual 
production processes, there are “easy” and “hard” procedures 
in CNC. In this sense, CNC machines do not differ from the tools 
and processes involved in a conventional craft. What does differ 

in combination with rapid prototyping on the design language of 
physical objects
Rapid prototyping and CNC machining tools are increasingly 
making their way, not only into production, but also into design 
schools. The machines are posing new challenges, not so much in 
their ability to execute drawings done on a CAD system by a process 
very similar to drawing, but by their ability to cut any geometry 

An aluminum assembly with pressure 
fit rubber strip. Early waterjet 
aluminum cut model 1999..
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is the potential for the creative reinvention of details originating 
in conventional craft in a CNC process. This can be accomplished 
through generative techniques where a customized solution for 
each detail is produced. However, few designers have explored 
these possibilities.  

Fabrication and language of details
The language of a detail results from the combination of material, 
required performance, design intentions and its manufacturing 
process. If any of these parameters change, there is potential for 
a new detail to emerge. So far, few specific details have emerged 
from the use of computer controlled machining. In this experiment, 
the author proposes an adaptable detail over a curved surface 
that would have been very hard to produce in any way other than 
through the combination of computer-controlled fabrication and 
generative modeling.

Tolerances, between pressure fit and constructability
The process of fabrication allows for the specification of very 
precise cutting dimensions. In this experiment, the precision is 
crucial in order for the joint to be a pressure fit joint. But too high 
a precision in the fit will prevent the assembly of the joint: due to 
its spatial curvature, the continuous detail cannot be assembled 
all at once but only sequentially. The sequential assembly requires 
larger fitting tolerance to allow the pieces to move into place. 
The challenge is to find the right balance between a tight fit that 
would cause problems in the assembly, and a looser fit and that 
might cause the pressure fit joint to fail. Ideally this would have 
to be modeled into the geometry generation in the first place 
rather than to compensate for the variations through the cutting 
tolerances during fabrication.

Ability of details to adapt to their geometric context
A connection detail for a varying geometric context needs enough 
flexibility to work in the complete range of scenarios. Many 
experiments have been made, for instance in textile and membrane 
design, to come up with adaptable details to correspond to the 
geometric context. Assembly details in car design often depend 
on geometrically adaptable connections. For instance, a door seal 
follows the curved rail of the car body and the frame between the 

The joint principle showing the 
variable parameters controlling the 
curvature and alignment of the joint 
parts.
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double-curved windshield and the car body describes a spatial 
curve. Such geometrically adaptable details are nothing new. What 
is novel though about the detail presented here is that its geometric 
dimensions vary based on the context and are manufactured 
for that exact location. A further extension of this approach is to 
allow different variations of the detail during generation based 
on conditional checks of the local context. For instance, if a curve 
becomes too extreme for one type of detail, a different type might 
be used.

Changes in standardization
With the generation of geometry through scripts that allow for 
parameter-based variations, the notion of standardization shifts 
from dimension based descriptions to a topologic system of 
relations. It is no longer necessary to fix a certain dimension at 
the interface between components, but the relationship of the 
two parts defines the shared dimension. The standard shifts to 
the description of the relationship. It is important to know how 
elements relate to each other, but it is not necessary to know their 
absolute dimensions. Parametric modeling has set the stage for 
the expression of elements as a set of relations that have variable 
dimensions. A non-dimensional based standard relies heavily on 
fabrication techniques that allow for the production of varying 
geometries based on a system, as in the example of the joint 
shown here. Generative approaches through programming allow 
the generation of complete systems out of a set of rules. Robert 
Aish, Director of Research at Bentley Systems, has developed a very 
promising approach to programming integrated into parametric 
modeling systems in the Generative Components extension to 
Microstation.

Self-registering geometries
When using manufacturing techniques that require post-fabrication 
assembly, it is very helpful to have self-registering geometries that 
allow for exact alignment of pieces in space. The puzzle joint is one 
approach to this problem. The continuous curvature of the joint 
provides a continuous fit between parts. In addition, it allows, in 
most cases, for only one, unique assembly of the pieces. In order for 
the pieces to snap together, they have to take on the desired three-
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dimensional shape. This ensures proper alignment of the pieces 
and the approximate three–dimensional shape of the overall 
form. However, inaccuracies result from the transformation of the 
digital geometry into the physical representation, as the current 
digital models do not take into account material properties, as 
for instance resistance to bending and material stiffness. When, 
in the case of the joint, one node forces a partial buckling of the 

surface, it affects the neighboring nodes as well. In the worst case, 
the propagation of these deformations renders the assembly of the 
pieces impossible.

5.1.1.2	 Experiment 2: A nested, hierarchical, top down 
surface control skeleton – the Reading Pavilion

The project was done by the author in collaboration with Tim 
Morsehead and Carlos Barrios in the context of a fabrication 
workshop co-taught by Mark Burry, Dennis Shelden and Larry Sass 
in 2002. The pavilion is an example of a nested control structure. 
High level controls propagate through the surface all the way to 
the implementation details. 
This pavilion offers a robust solution for the fine-tuning of 

Reading pavilion project in digital 
mockup class 2002.
Team: Axel Kilian, Carlos Barrios and 
Tim Morsehead. Parametric model in 
CATIA showing the development of a 
adaptive detailing principle. 
Image: Axel Kilian
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changes to propagate through the design surface all the way to the 
skin sandwich details, which update accordingly.
The surface is developed as sandwich construction of varying 
thickness. The thickness is based on the location in the skin. The 
higher up, the thinner the sandwich becomes to allow for flexibility 
of the seating pods that hang from the skylight openings. This 
strategy proved successful in both paper and cardboard prototypes 
as well as in a full scale prototype piece using metal and wood.
With the evaluation of parametric approaches through hierarchical 
control skeletons the initial investment into the parametric model 
is high and its topologic flexibility is low. But it offers a high degree 
of proportional exploration even at full implementation detail. 
Another shortcoming was the potential loss of the developability 

proportions and general layout adjustment even when the design 
is already fully detailed. The goal was to model and define all details 
such that for changes in the systems all parts would still conform 
to the material limitations and the assembly logic. The author 
developed a CATIA model that incorporated a hierarchical control 
skeleton.  It allows layout changes of the floor plan as well as the 
proportions of the envelope and the skylights. The model allows 

The hierarchical control grid for the 
pavilion. It allows the high level edit 
of the overall layout of the pavilion 
through the positioning of the floor 
plan. Image: Axel Kilian
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aligning surface strips according to minimal and maximal curvature 
present in the surface. Where minimal and maximal curvature is 
very similar in magnitude, the strips are placed diagonally to the 
two principle directions of curvature. Where one curvature is much 
bigger than the other, the strip aligns itself with its direction. This 
results in the spiraling effect of the surface strips in the reading 
pavilion. This approach was explored computationally in the 
“scripting strips” project using scripting in Rhino.

property for the surface panels making up the double curved 
façade. This shortcoming triggered additional research into the 
generation of developable surface strips from NURBS surfaces. In 
the reading pavilion project the author established the principle of 

Design surface responds to the 
environment. The design was done 
through a parametric kite design 
software by David Aberdeen. It 
allows the quick fabrication of design 
iterations based on a set of control 
parameters for a variety of families of 
kites.
Test flight of a self built 120 square 
foot kite by the author and some 
design variations in the software.. The 
translation of the pure geometry in a 
cutting pattern for buildings the main 
challenge.
Surfplan by David Aberdeen
http://www.surfplan.com.au/sp/
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fixed state but is in constant search for equilibrium. Form giving 
factors are: 
•	 The design geometry, through the wing profile embedded in the fabric 

cutting pattern. 
•	 The load from the control lines that connect to the rider.
•	 The wing producing upward lift due the true and apparent wind 

generate by flying the kite.
•	 Speed and control input of the rider. 
The geometry cannot be modeled without taking into account 
the deformation under load, where load is a combination of the 
above factors. In the parametric kite software “Surfplan” by David 
Aberdeen, which the author used to design and build this sample 
kite, the geometry emerges from a finite element model that 
simulates the kite under load. The software is also interesting for its 

5.1.1.3	 Experiment 3: Performative Surfaces –Pneumatically 
Stiffened Kite Membranes

A relevant variant of the design surface principle with less complexity 
but more interdependencies is the example of kites used for kite 
surfing. The experiment shown here exemplifies the connection 
between designed geometry and actual geometry under load. The 
tensile membrane, which is stiffened by a pneumatic frame, has no 

The automated layout patterns of 
David Aberdeen’s surfplan software 
is an example of the automation of 
a process of design built iteration 
previously done manually by the 
author. David Aberdeen translated 
the knowledge of the community of 
kite builders into a design explorer 
with building output.
Images: Screenshots surfplan 
software of a design by the author.
Surfplan by David Aberdeen
http://www.surfplan.com.au/sp/
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such performance characteristics is easier in a kite than in the 
complex context of building. But for the quantifiable dimensions 
of architecture at the very least an integration of performative 
aspects in the generative process would be desirable.

5.1.2	 Design Surfaces and Parametric Components 
In most real world examples, multiple constraints act in 
combination on a component of a roof assembly, to take one 
example. This requires a more sophisticated structure to solve the 
relationship between surface geometry and environment. The 
following experiments show different ways of integrating external 
parameters into a surface based geometry.

5.1.2.1	 Experiment 4: Component Population – Geometric 

Three dimensional Z-corp print with 
adaptable rod diameters based 
on the geometric context of the 
placed component. The geometry is 
generated through a Rhino script that 
operates on a NURBS design surface 
chosen as an input at the beginning of 
the generation cycle.

integration of fabrication output as an integral part of the design. 
The cutting patterns can be printed and used as templates for the 
fabric pieces to build the kite. Therefore it is a perfect example of 
an integrated design-simulation-fabrication loop.
Kites are not architecture obviously, but the kite example 
highlights the dynamics of competing forces present in any design. 
Design goal have to be aligned and work together. To quantify 
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Adaptive Space frames
The general case of surface population is based on the parametric 
representation of surfaces through a two-dimensional UV 
parameter space. Mapping two-dimensional coordinates onto a 
three-dimensional surface offers a robust and easy to implement 
approach to work with design surfaces. This principle has been 
explored excessively with the use of parametric design systems and 

will not be illustrated in depth. But the approach is still powerful 
enough to illustrate some variants of the basic principles with some 
additional constraints added.
In the example shown here the basic population unit is a space 
frame pyramid that can adapt to the distortions of the UV space 
dictated distortions. All volumetric units are responsive to their 
respective length and position within the pyramid unit and adapt 
proportionally. In combination with three-dimensional printing 
techniques here, a ZCorp© process, the curving space frame can 
be output in physical format. Its value is very limited beyond a 
representational artifact as the assembly methods for large-scale 
space frames are still very different from the additive printing 
methods available at the model scale. Nevertheless, it holds a 

An example of a digitally generated 
geometry following the underlying 
NURBS surface and adapting in 
structural depth and member 
diameters.
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certain interest in its implications for material. If material properties 
can be customized through spatial lattices, the properties of an 
otherwise monolithic material can be substantially altered to 
provide additional functionality such as acoustic or tactile qualities 
or the ability to absorb moisture or light. This could potentially 
form a research field of spatial material design in the gap between 
material engineering at the molecular level and material use at 

the architectural scale. The component population approach 
becomes even more challenging with the integration of additional 
constraints, besides the input from the base design surface. 

5.1.2.2	 Experiment 5: Integration of environmental 
constraints – adaptive components

An example of such an interaction between base design surface, 
external factors in form of the sunlight direction, structural 
considerations and assembly conditions is the adaptive louver 
experiment. There are several basic responses that can be 
integrated:
•	 Locally geometric: response to the design surface
•	 Globally geometric: adjustment of the unit to a global factor such as 

the sunlight vector or a predominant wind direction

An adaptive component that 
responds to three levels of context:
- the local surface geometry context
- the global light direction vector
- component based scaling based on 
forces present.
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•	 Force propagation: response to propagation of forces from load to the 
supports; 

•	 Interfacing dimensionally: functioning as intermediary between other 
sets of components such as a truss between a roof membrane and a 
structural column. The unit has certain input and output requirements 
to fulfill.

At the intersection between different constraints and the mediator 

between different requirements the unit based approach becomes 
more interesting. But the possibilities for material response within 
this system are limited but interesting field responses emerge out 
of the interplay of the different constraints.

5.1.2.3	 Experiment 6: Conditional Components
The introduction of conditional behavior in the geometric varying 
components allows for a new set of behaviors. For instance it is 
possible to create components that orient themselves to the sun 
but are closed if the angle of the sun passes a defined threshold 
in relation to the surface. Even with simple conditionals like this 
the vocabulary of possible responses and the emerging patterns 
are convincing in their response to the local surface geometry. 

Conditional surface components that 
adjust their state based on certain 
thresholds such as a minimum angle 
between component and sun angle..
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The next level of conditional behavior would be the detection of 
neighboring components and the propagation of component 
states throughout the system. At that point it would be advisable 
to depart from the grid like positioning of components towards 
more flexible placements that are not dependent on the UV grid 
alone.

5.1.3	 Surface guided Component Generation 
From the set of previous case studies it becomes apparent that 

the top down subdivision of a design surface into homogenous 
components is not adequate for many design problems and other 
strategies need to be developed. The following two experiments 
follow the approach of growing components within the desired 
constraint envelope of the design surface. In the first experiment, 
the scripted strips, this is done by using top level design inputs 
in form of a design surface. In the second experiment, it is 
accomplished by using a grammar in form of a Lindenmeyer 
system. The second experiment is a citation of the MoSS project 
by the Emergent Design Group headed by Peter Testa, together 
with Una-May O’Reilly, Markus Kangas and Axel Kilian (Testa et al 
2000).

5.1.3.1	 Experiment 7: Growing developable strips along a 

Traces following the min max 
curvature vectors on double curved 
surfaces. The traces are tracked and 
joined into strips if they are sufficiently 
close to form a developable surface 
strip.
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surface – Scripted Strips
With the Scripted Strips the author further developed the maximal-
minimal curvature surface approach for developable strips started 
on the reading pavilion. In this case, the placement and orientation 
of the strips is generative through a script that extracts the 
maximal and minimal curvature of a NURBS surface and provides 
those samples as the input to a surface walker that creates paths 

on the surface. A second step evaluates the created paths for 
their compatibility with the developability goal and creates strips 
from the set of matching curves whenever possible. The test for 
developability is not very rigorous but close enough to function 
with flexible materials such as cardboard. The more interesting 
aspect of the case study is the emerging tiling patterns that reflect 
the heightened properties of the underlying NURBS surface. The 
stepping progress stops when 90 degree turns are encountered 

More complex surfaces require an 
adjusted technique for determining 
the starting points for the strips on 
the surface. The change in curvature 
is monitored and at thresholds of 
change a new strip is started.
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and strips are only created if the gap between adjacent borders 
is below a given threshold. The emerging topology is very 
interesting, resembling the patchwork agricultural landscape of 
parts of Europe. This might suggest that similar factors influenced 
the laying out of farm land in hilly terrain due to access routes and 
slopes of the fields and their influence on what equipment or tools 
could be used.

The key result of this study is that complexity and variation can 
emerge out of the interplay of simple spatial rules and a given 
design surface.

5.1.3.2	 Experiment 8: Growing the components into a 
surface – MoSS project –Peter Testa et al.

The MoSS project employs a Lindenmeyer based growth grammar. 
Each geometric unit develops out of the interplay of the grammar 
instruction and the geometric distortion when implemented in 
the three dimensional environment. The project is documented 
in depth by the edg group who developed it. The edg group was 
headed by Peter Testa at MIT in 1999. The author contributed the 
processing of the growth geometry into geometry that can be 

MoSS by the emergent design group.
MoSS is a surface growth program 
based on Lindenmeyer systems 
in three dimensional space using 
attractors and repellors to shape the 
growth of surfaces during generation..
Image: Axel Kilian for edg.
http://web.mit.edu/edgsrc/www/
moss/index.html
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prototyped through laser cutting. MoSS is a project developed by 
Peter Testa, together with Una-May O’Reilly, Markus Kangas and 
Axel Kilian (Testa et al 2000) prior to this thesis. The contributions 
by the author carried on in future experiments documented here. 
The key result of the MoSS projects are: Growth as a generative 
principle with the presence of forces is a powerful concept and the 
MoSS project was only a preliminary study of what is possible. If 

growth principles are applied in multiple stage fashion additional 
performative constraints could be applied which force based 
deformation or load dependent thickening of materials. Overall it 
would provide a higher integration of form contributing factors.

5.1.4	 Fabricating Surfaces – Material Computes
Several of the previous studies came upon the effect of material 
resistance. In fact the description of computational geometry is 
in a large part based on formalisms derived from material based 
curvature generation. The following case studies are based on 
the material ability to interpolate curvature based on material 
resistance. The projects are fabrication surfaces that allow for 
the control of curved surfaces for the casting of tiles. The control 

Translation of NURBS surfaces 
into milled volumes following the 
isoparam curves. A very light weight 
approach was taken to model the 
surface with four equal order B-
Splines only. This allows for robust 
editing of the splines and easy 
fabrication.
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is reduced to a grid of pins that are attached to a rubber flexible 
surface. 

5.1.4.1	 Experiment 9: Surface Fabrication through three axis 
milling

This case study is about the creation of surfaces through a 
subtractive milling process. The milling paths are directly linked to 

the isoparam curves of the NURBS surface patches. The modeling 
approach for the surface is that of creating a closed loft from 4 edge 
splines in space. This creates the aesthetically appealing spatially 
undulating surface milling pattern and is a very robust and fast 
modeling and milling approach. For volumetric double sided cuts 
the part needs to flipped in its frame. The next level of complexity 
is reached when the cutting depth or the geometry of the surface 
requires a part assembly of individually cut pieces. The generation 
of the parts from the constraints of the fabrication envelope 
constraint and the assembly logic poses an additional challenge 
especially if surface continuity across the parts is crucial. The thesis 
contains examples of such assemblies in the one wheeler car 
design study where carbon fiber molds were fabricated in such a 

Computing surfaces outside the 
digital context. Material computes its 
shape based on material resistance. 
A mechanical control polygon can 
recreate digital curvature physically.
Image: Axel Kilian, Kyle Steinfeld.

Project with Kyle Steinfeld for the 
“How to make almost anything” 
course by Neil Gershenfeld.

Computer numerically controlled 
pistons drive the surface into the 
desired position.
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fashion. This process should ideally be automated with the cutting 
geometry and the fabrication constraints as the inputs.

5.1.4.2	 Experiment 10: Fabrication devices using material 
resistance to approximate curvature

The thickness of the rubber surface interpolates the control pin 
grid to a double curved surface that allows for the casting of 

Physical spline model controlled 
through a three-degrees of freedom 
polar tangency device.

The tangency controllers are positioned at each end of the physical spline grid 
and control the curvature from the rod’s ends. Both physical curvature devices 
were developed for adjustable ceramic molds. Material resistance plays a key 
role in the determination of form
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ceramic tiles. The control of the pins is through motorized threaded 
rods with sliding potentiometers attached to them for position 
sensing. The main challenge was how to keep the surface taught 
in different curvature positions, as the material has to substantially 
lengthen in a curved position. The implications for surface design 
and fabrication are that a possible approach to the fabrication of 
complex geometry maybe to leave the material curvature control 

up to the physical entity itself and calculate it through the material 
resistance itself. This project was developed as part of the class how 
to make almost anything with taught by Neil Gershenfeld. The final 
project was developed in collaboration with Kyle Steinfeld.
An earlier development by the author envisioned a physical spline 
based surface controller for casting tiles as well. The important 
part is the physical tangency controller for introducing curvature 
into the spline grid. It was designed to control the slope of a tube 
through its start and end point. The tube would be connected 
to a spline that would be dimensioned based on the physical 
resistance of the material. The project did not advance beyond the 
prototyping of the tangency controllers.

5.1.4.3	 Experiment 11: Puzzle surface – material constraints 

Material resistance also plays an 
important part in forced assemblies 
of parts. In this variation of the 
puzzle surface polycarbonate was 
waterjet cut following the design 
geometry. After assembling the 
piece the  friction fit joint  introduces 
local double curvature by distorting 
the material. This tensioning of the 
material distorts the overall geometry 
away from the design geometry, but 
at the same time it creates a stronger 
shell like assembly of the parts.
These effects can be used to the 
advantage of the design if they 
can be sufficiently well predicted. 
Also the design geometry has to 
take into account the distortions 
introduced by the assembly process 
in order to achieve a predictable 
overall shape. Because of these 
challenges such effects are avoided 
where possible in building practice. 
Design exploration should integrate 
this evaluation to use the material 
potential. In bridge design and large 
engineering structures this is already 
the case. Equally traditional craft 
based processes are using similar 
principles for efficient  use of material. 
For instance basket weaving relies 
on the interlocking of rods that are 
stressed in bending and provide the 
elastic rigidity of the final assembly. 
More such synergy effects would be 
desirable in construction.
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which follows a different curvature. The friction fit connection 
forces the part partially into the curvature of its neighbor. Due 
to the flexibility of the material partial double curvature occurs 
around the connection and the joint gets additional forces from 
the incompatibility of the curvatures.

– geometry feedback
The three-dimensional jigsaw puzzle surface works similar in 
providing resistance to the bending forces introduced through the 
connections between the surface strips. The additional challenge 
in the jointed connection is the forced overlap of different 
curvatures in the adjacent strips. The puzzle joint from one side 
shares curvature of on strip but reaches over into the other strip, 

Reading Pavilion with Tim Morsehead 
and Carlos Barrios.. The mockups for 
the pavilion ranged in scale from 1:30 
to 1:1. All used the exact same design 
geometry to drive the scale based 
translation into constructible parts. 
The addition of material thickness 
and component volume and the  
fragmentation of monolithic parts 
into sub elements with the required 
connections was a good exercise in 
modeling robust design geometry 
that can support a range of scales 
and material dimensions through 
parametric changes.
Images: Axel Kilian, Tim Morsehead
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3-D print section1:20 Paper model section1:10 Cardboard model section1:5 Wood/Metal model section1:1

5.1.4.4	 Experiment 12: Scale steps of prototyping surfaces
The reading pavilion study also was an interesting study in the 
development of scale related prototyping choices from a shared 
digital model. With each scale increase the core geometry 
generated by the CATIA© model was interpreted with additional 
information and thickened according to the material. The joining 
places posed an additional challenge due to the unconstraint 
nature of the connection. Intentionally the connection between 
the pre fabricated brick units was left curved, dubbed also the 
roller coaster connection to its spatial twisting of the two surface 
rails. The detail modeling was done manually using the wire 
frame geometry as the center line of the joint development.	
The reading pavilion was a project conducted in collaboration with 

The translation of design geometry 
through four different scale to a 
fully detailed assembly mockup in 
metal and wood. There are several 
adjustments necessary. 
First: offset of material thicknesses 
and the adjustment of neighboring 
part relationships. 
Second: formulation of connection 
details as scale, mass and forces 
increase.
Assembly sequence dependent 
details as components become 
heavier and more rigid.
Images: Axel Kilian, Tim Morsehead.
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Tim Morsehead and Carlos Barrios.

5.1.4.5	 Experiment 13: Cone based fabrication translation of 
double curved surfaces	

Geometric primitives implement the developability constraint for 
the translation of a double curved surface into developable surface 
parts.

One other possible approach in adding material constraints into the 
fabrication of freeform geometries is through the use of geometric 
primitives that enforce the material condition required to build 
the surface physically. One such small case study is the cone based 
surface example, where the use of the cone primitive allows the 
translation of a double curved surface into developable strips with 
a comparatively tight fit with the original design geometry. The 

A cone based construction 
approach to double curved surfaces. 
The developability constraint is 
embedded in the geometric primitive 
of the cone. The edges lie on the 
target surface as well as the high 
point of the cone. This provides a very 
good visual fit to the surface. Cone 
based rationalized construction dates 

back all the way to  R. Liming, who 
designed fighter aircrafts during WW 
II. (Liming 1944)
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Overview of the physical based 
experiments. In summary he image 
shows a range of formulations of 
material strategies in response to 
material constraints, design surface 
and generative and explorative 
methods.
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reason for this visually seemingly very accurate translation is the fact 
that the cone’s bases follow the underlying design surface directly 
as do the tips of the cones. Thereby the recognizable features of 
the geometry support the properties of the surface whereas the 
reduction in geometric precision happens in the single curved 
parts spanning between base ridge and cone tip. One could argue 
that this is very similar to the usual developable strip approach 
used in many projects to date but in fact there the paths are less 
likely to be spatial or if they are they are still dividing the surface 
up in clear linear sections emphasizing the facetting of the surface 
and the loss of precision in that direction. There are many subsets 

Plywood

Surfaces

Geometry

Fabrication

Prorotyping

Developable
Surfaces

CATIA/GC

Proportions

Material

Curvature

Connection

Assembly

Associativite
parametric
model

CATIA/GC

Matching
Relationships

Parameters

Curved Splines

Representation

LaserCutter Flat sheetsCutting bed
size

Driver

Implementation

Representation

Driver

Implementation

Representation

Driver

Implementation

Representation

Driver

Implementation

Representation

Driver

Implementation

Representation

Driver

Implementation

prim
ary

driv
ers

secondary drivers

tertiary drivers

The chair experiment diagram.



140

to the cone approach and most of them really only become useful 
with a programming approach to processing the surface and the 
geometric primitives, some of which have been previously explored 
involving Voronoi diagrams and Delaunay diagrams.

5.1.5	 Chair Experiment – Circular Exploration 
between Surface and Material Constraints

Example of a design case study that integrates several constraints 
in pursuit of an aesthetic design goal formulated through a 
geometric sketch.
The chair case study was conducted as a test application of the 
original puzzle detail on a designed object scale such as a roof or 
a piece of furniture. In this case due to time and cost constraints 
a chair was chosen as the test case as both material amounts and 
fabrication tools stay at a manageable stay for an initial first run.

5.1.5.1	 Process
The chair case study was conducted over a period of three 
months starting with a design idea in form of a geometric sketch 
model. Over the course of development the aim was to produce 
a prototype using thin plywood and explore the aesthetic and 
structural potential of single curvature based assemblies.
The chronological sequence was a paper based 1:2 scale mockup 
of the geometry sketch in rhino. The literal translation proofed 
to be structurally insufficient to support weight. The findings of 
the paper mockup were valuable in identifying the weak spots in 
the assembly for a second round of geometric modeling. For the 
second digital representation a parametric model was chosen and 
implemented in a number of parametric environments, namely 
CATIA© and Generative Components©. The parametric model 
severed as the persistent accumulative model at the center of the 
iterative modeling cycles. The topologic structure of the control 
geometry allows for adjustment of the number of parts. A set of 
parameters allows for the adjustment from the iterative prototyping 
cycles. The main role of the parametric model is therefore to 
collect and unify the findings from the range of prototypes and 
aesthetic evaluation conducted in the process. The dependencies 
are circular; meaning any change in one parameter affects all the 
other parameter.  These cross dependencies are a challenge and 
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•	 maximal allowable curvature
•	 tolerances for friction fit joints
•	 tolerances for assembly critical joints
•	 structural scaling of components
•	 aesthetic parameters for proportion
•	 aesthetic parameters for distribution of parts
•	 aesthetic parameters for number of parts
Some of the parameters, for instance the assembly tolerance 
parameter, were added during the process due to experiences 
with the full-scale partial prototypes. Others were there from the 
beginning as for instance the proportional values for the overall 
design of the chair structure.
Some of the parametric descriptions have topologic flexibility 
meaning they can adjust fluidly to the adjustment of the number 

usually the goal is to eliminate such effects in a design process. 
In the chair example these cross dependencies were intentionally 
allowed and studied for their potential in driving the aesthetics of 
the chair design further. The core parameters were:
•	 thickness of material

The initial geometric sketch 
modeled in Rhino from NURBS 
surfaces and  splines. The geometry 
captures an idea and turns it into 
an image. It formulates curvature in 
the relationship of the parts as the 
aesthetic driver for the chair design.. 
The design motivation was from the 
beginning to build a chair assembly 
with all curved developable surface 
parts through a friction fit assembly.
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of parts through proximity triggered point selectors and topology 
independent representation of parts.

5.1.5.2	 Geometric sketch
The geometric sketch captured and established the aesthetic 
intention of the design as a stylized constraint free, spatial 
composition carrying the idea over into geometric form. This design 

was produced in a matter of hours without additional sketches 
directly within the three dimensional modeling environment. It 
is not measured to be to scale or even functional but is purely a 
geometric response to a design idea that formed the basis and 
evaluation base for all further exploration as more and more 
constraints were integrated into the design up to the full scale 
prototype. The guiding principle was the interest of the author 
to design a chair from thin curved surface pieces with a light-
weight, feature-rich appearance. The geometric sketch establishes 
a testing platform to measure later design variations against. It was 
not directly used for the following design representations except 

Establishing the fabrication 
constraint as a design driver for the 
translation of the geometric idea 
into a prototypable and fabricatable 
assembly. Wood and the laser cutter 
are chosen as implementation choices 
for the design driver of fabrication.
The image shows the final chair 
assembly both in parametric 
description and in physical form.
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The fabrication design driver is 
implemented through  the laser 
cutter, which triggers several other 
constraints such as cutting bed size, 
flat sheet material stock and flattened 
cutting geometry. 
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for the first paper mockup. Later models were developed from 
scratch, guided by the findings of the earlier prototypes. This was 
done to avoid post rationalizing the initial geometry and instead 
let the design idea and its geometric manifestations evolve and 
mature without the direct transfer of the initial geometry.

5.1.5.3	 Paper Mockup
The mockup is a direct mapping of the geometry sketch into a 
paper model at a scale of 1:2 in order to verify the spatial validity 
of the design. The paper model helped to validate the developable 
surface condition for all the parts of the geometric model sketch. But 
it also showed substantial structural flaws with the open meshed 
curved surface assembly. Through several iterations adjustments 

The proportions introduced in the 
geometric sketch act as the design 
driver. Through parametric software in 
CATIA and GC  they are translated into 
an associative model for the control 
skeleton. 
Proportions are then implemented 
through the establishment of 
equation relationships between the 

different geometric entities. The 
proportional links between parts 
also ensure the correct geometric 
response for varying scales of the 
model.
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The proportional constraint is 
implemented through CATIA and 
GC and represented through an 
associative, parametric  geometry. 
This construct is controlled through 
parameters, which define the 
proportional relationships between 
the parts.
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were made in the physical prototype to test possible changes. 
These findings were passed on into the next design presentation, 
the parametric model of the next iteration.

5.1.5.4	 Parametric platform for gathering revisions and 
exploration

The parametric model numerically links the parameters together in 
a simultaneous representation of the current model. In its gathering 
role it is central but in terms of its role in the design process it is 
only one of several design drivers. There are other factors in the 
interaction between the different design representations that are 
not captured by the parametric model like the aesthetic of the 
design or the assembly sequences. Therefore the design is not 

Establishing the constraints for wood 
happens through a series of material 
mockups of the design geometry. The 
findings are analyzed and mapped 
into the design geometry-material 
geometry translation. One such 
finding is the role of grain direction 
in the types of part geometries of 
the chair. Different orientations were 
tested and the best fit integrated into 
the process illustrated to the right.
Selective prototyping played a key 
role in this small material based 
exploration.
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The material constraint is turned 
into a driver through the choice 
of 1/8 inch plywood. The material 
implementation is represented 
through surface geometries, 
which in turn are required to be 
developable to fit the material choice 
and the fabrication constraint. The 
implementation of the developable 
surfaces again happens through 
CATIA as the implementation choice, 
with parameters for material thickness 
and geometric alignment constraints 
to account for grain direction.
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completely externalized but still many of the circular dependencies 
become apparent even in this partial representation of the design 
dependencies.

5.1.5.5	 Development prototype
With the parametric model it is possible to create partial prototypes 
to integrate the detailing strategy in to the geometric information. 
Several iterations were necessary for this step to find the right 
parametric environment to support the integration of material 
thickness and parametric adaptive detailing. The challenge is to 
formulate the approach in a way that captures the essence of the 
design sketch while adding structural and assembly logic. The 
initial approach taken proofed insufficient both in aesthetic terms 
as well as in assembly terms. The transformation created too many 
details in an otherwise solid appearance while loosing the rib like 
aesthetic.	
Key points regarding exploration: The establishment of a material 

A series of selective prototypes 
were constructed from the design 
geometry to test connection 
constraints in the context of the full 
assembly. Fine adjustments had to 
be made through the connection 
parameters in order to achieve a 
reliable fit throughout the range of 
geometric variations of the chair. A 
mixture of adaptive locally derived 
parameters and min max material 
dimensions proved to be most reliable 
for the final iteration of the joint 
positioning and scaling.
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The connection constraint is a 
secondary constraint triggered by 
the implementation choice in the 
fabrication constraint. Still due to 
the frequent use of laser cutting a 
language has been forming around 
assembly techniques of these parts. 
For the author this vocabulary is 
based on the puzzle joint and it plays 
the role of a design driver here. Its 
assembly and aesthetic features make 
it an important part of the overall 
design.  The representation chain links 
all the dependencies and finally is 
implemented as a rhino script.
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strategy is a key design decision in the process and carries equal 
importance to the early design geometries. It either carries the 
design intention or not, it is the first check point of all design 
constraints rejoining after separate explorations.

5.1.5.6	 Detail prototype series
This is an instance of iterative prototyping of a selected portion of 

the overall design in order to test the assembly, fabrication, and 
aesthetic function of the design. Adjustments are integrated into 
the parametric model. The parametric model acts as the vehicle for 
the integration 

5.1.5.7	 Calibration of parametric model
The process of calibrating the parametric model involves the 
iteration between producing a prototype, analyzing its shortcoming 
and translating the results into the parametric representation either 
through changes in the topology or in changes of the dimensional 
parameters. All parameters affect each other; any change in the 
geometry has potential influence on the remainder of the model.

The final assembly challenged all 
the implementation choices made 
so far. The initial choice of grain 
direction proved to be wrong as 
parts kept breaking. This showed 
the failure of tight tolerances for 
assemblies that require force and rely 
on multiple connections to be made 
simultaneously. Redesigning the outer 
rail joins to withstand much greater 
bending forces through rounding off 
the inner slot allowed for the close 
fit tolerance needed for structural 
integrity while allowing for assembly.
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Assembly is a constraint at the 
intersection between the connection 
and fabrication constraints. 
Assemblies are one of the most 
complex constraints to externalize. 
It is a time based sequence of spatial 
movements supported by humans 
or machines. The chair design 
only needed minor adjustments 
throughout the first prototypes to 
reliably accomplish the assembly. 
The timing was a matter of practicing 
sequences and adjusting tolerances 
based on the detected clashes 
through the physical prototypes.
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5.1.5.8	 Fabrication preparation
The final prototype is mainly tested for assembly tolerances and 
grain alignment and preparation of the layout of parts within the 
material constraints of the sheets available.

5.1.5.9	 Generation of connector detail
Structural integration of the parts relies on two principles combined. 
One is the friction fit jointing of tangent surface assemblies and 
second the spatial assembly of parts in an interlocking way that 
blocks the friction joints from coming undone. This principle 
propagates through the entire assembly effectively locking all 
parts in place

One possible chair design.

The complete constraint dependency 
diagram that identifies the cross 
dependencies and how the 
constraints act as design drivers in the 
overall design.
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5.1.5.10	Assembly
The material properties for the wood chosen mandated the 
alignment of the grain perpendicular to the direction of curvature 
to avoid cracks and breakage.  The perpendicular alignment meant 
also that bending the wood required a far greater force and was 
not possible in many of the tighter locations where many curved 
parts need to be assembled simultaneously. For those parts light 
steaming was applied to protect the wood during excessive stress 
and partially pre-bend the parts in the desired shape beforehand. 
This treatment does not constitute a full blown shaping of the parts 
as no molds or steaming equipment was used, it was merely a way 
to prevent time consuming reproduction of parts. The assembly 
worked relatively smoothly in the range of several hours. A proper 

Partial feedback loops make the 
exploration more challenging. The 
loops emphasize the circular nature of 
the exploration. Changes in a subpart 
of the design exploration can affect 
the whole causing adjustment cycle 
that can be hard to control.
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assembly sequence needed to be developed from the geometric 
constraints and eventually worked very well for a single person to 
assemble the over 140 parts. The biggest challenge were the final 
edge strips since they required the connection of all parts at the 
same time. The legs were only partially successful due to them not 
being fully modeled parametrically. In further iterations they would 
be fully integrated into the parametric representation.

5.1.6	 Analysis of the Projects
Surfaces play an increasingly important role in design representation 
and also led to the increased reliance of architectural representation 
on geometry overall. This has led to many of the frustration and 
misunderstandings in design in the digital context. At the core 

Highlighting individual constraint 
connections helps to detect the main 
design drivers among the constraints 
and the role of representations in 
gathering or distributing information 
to other representations. In this case 
the proportional control skeleton acts 
as an integrator among several other 
constraints that are otherwise not 
directly connected.
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of the geometric representation stands the surface. Despite the 
importance of solid based modeling in engineering and architecture 
the surface is still at the core of design representation as even solids 
are composed of surfaces and a considerable percentage of design 
software does not implement full solid modeling function bout 
rather relies on surface representations The surface condition has 
many facets and only few of them are captured in digital surface 
representation.
The separation of sculptural expression and translation into a 
buildable system led to some of the most stunning buildings 

The material connections act as  
integrators between curvature and 
fabrication.
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such as Bilbao or Walt Disney Concert Hall. But at the same time it 
demonstrated the lack of domain integration into the initial design 
process. And I am not arguing for taming the design process but 
rather to support and embedded a structural and material sensitivity 
into the design process. Not so much in its imagined form but in its 
manageable form that allows for the precise capturing and post-
processing of the desired form in a digital system.

5.1.6.1	 Conclusion
The chair case study was successful in developing a partially 
functioning prototype of a chair exploiting the possibilities of 
curved wood surfaces in a structural assembly. The parametric 
model as the repository for the prototyping revisions proofed 

If one follows the links several circular 
dependencies can be identified 
amongst the constraints. This makes 
it harder to model them as design 
drivers as there might be feedback 
loops.
For instance a change in material may 
require a different fabrication choice 
which may affect connection and 
assembly 
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The complete constraint network with 
implementation and representation 
choices.
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Parametric component with full 
connection details.

Final full scale chair assembly in 
plywood.

Parametric models of the control 
skeleton and the parts riding on it.

A surface model with reduced detail 
for evaluation of proportions and 
positioning of parts.

Detail studies and physical-digital 
comparison

(right) Assembly steps for legs and 
seat part.
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successful. The parametric model’s functionality to support the 
circular properties of the project are limited though, as it can only 
receive information fed to it through the input parameters but was 
not connected to any other representations.
It is difficult to argue for a general model for instance for material 
simulation. This specific case did not use the material for the realism 
of its representation but rather as a design rational.

5.1.6.2	 Circular dependencies – effects on design – 
disciplinary barriers

The case study is part of this thesis as the circular dependencies 
observed in the study and in the studies leading up to it are present 
in all projects no matter what scale or domain and managing them 
properly can make the difference between success and failure of 
a project. Beyond the management of a project the circulars main 

Ceramic workshop in collaboration 
with IST Lisbon, 2002.
Instructor: Larry Sass , TA Axel Kilian, 
RA Carlos Barrios.
The exercise called for the description 
of a system of interacting parts to 
be parametrically modeled in CATIA 
based on a physical precedent. 
Min Cho worked on a “mushroom like” 
tile study modeled in CATIA.

Image: Min Cho

Fall 2002      4.182  Design and Fabrication               Min Cho

The original idea is to develop a ruling
surface to guide an overall profile of
the mushroom tiles. In this mockup
exercise,  plastic rods were used to
support the mushroom tiles in 3D,
instead of creating a guiding surface
on which to lay the tile volumes.
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research interest is the potential for triggering aesthetic potential 
and synergies between the different domains adjacent to the 
design.

5.1.7	 Teaching Examples

5.1.7.1	 Workshop on Parametric Modeling and Ceramic 

4.182 ceramic workshop in 
collaboration with IST Lisbon. Fall 
2002 
Study of a parametric relationship, for 
which she chose a copper tube fitting 
system and developed an interlinking 
mesh from it.
Image: Xin Tian
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Construction – MIT in collaboration with IST Lisbon
A workshop focused on conveying principles of parametric 
modeling in the context of ceramic construction systems was 
taught in the fall of 2002 in collaboration with the Instituto Superior 
Technico in Lisbon, Portugal. The workshop was headed and 
organized by Larry Sass and was taught in collaboration with Jose 
Duarte, Luisa Caldas and Joao Rocha (IST). The author contributed 

Fabrication workshop Spring 
2003. “Light in architecture” using 
parametric and generative tools. 
Instructors: Axel Kilian, Larry Sass, 
Terry Knight. RA Carlos Barrios, 
Yanni Loukissas, TA Aaron Greene, in 
collaboration with Hugh Whitehead, 
Judit Kimpian and Francis Aish, from 
Foster and Partners.. 
Work shown by Sawako Kaijima, 
Alejandro Zulas, Stelios Dritsas and 
Sameer Kashyap. 
On the right the lighting test box for 
the facade exercise.

as a teaching assistant. He was responsible for the first exercise, a 
system analysis based on CATIA©.
The author structured the first half of the semester with design 
exercises that focused on the analysis of systems and the modeling 
of these systems and their interaction in a computational fashion. 
One student chose as her building component copper tubing 
bends and developed form the analysis of their interaction 
different schemes of how to extend their intended use into that of a 
building skin. She developed different types of meshing strategies 
to achieve this. The goal of this exercise was to teach the students 
parametric associative modeling through the careful analysis of an 
existing system, thereby challenging them to adopt an alternative 
digital modeling approach to geometric descriptive modeling than 



168

the one common in standard CAD platforms. 
This approach was partially successful in introducing students to 
the following assignment which required them to work in groups 
in the much more complex context of a full building façade. The 
danger in combining a complex design task with a novel software 
approach is that there is no time to understand both simultaneously 

Fabrication workshop Spring 
2003. “Light in architecture” using 
parametric and generative tools. 
Instructors: Axel Kilian, Larry Sass, 
Terry Knight. RA Carlos Barrios, 
Yanni Loukissas, TA Aaron Greene, in 
collaboration with Hugh Whitehead, 
Judit Kimpian and Francis Aish, from 
Foster and Partners.

Three dimensional prints of the 
parametric and script generated 
structures for testing in light.
Work by Rita Saad and Maria 
Thompson, Sawako Kaijima, Victor 
Gane. 
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and students revert to the processes they are accustomed to without 
learning the potential and shortcomings of the new approach.

5.1.7.2	 Workshop on Parametric and Generative Methods 
– MIT in collaboration with Foster and Partners 

In the spring of 2003, a second workshop was taught that focused 
on the teaching of parametric and generative methods in design. 

Project by Maria Thompson, RIta 
Saad shows script and one generated 
structure .
Image: Maria Thompson and Rita 
Saad

(top)Video conference session with 
students and Hugh Whitehead, Judit 
Kimpian and Francis Aish. 

Image: Federico Casalegno 
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Victor Gane

Direct light – 10 AM: Diffused Light  - 2 PM                         23Surface Patch/planer/Single Curve/ Double Curve                            26

Direct light – 10 AM: Diffused Light  - 2 PM                         23Surface Patch/planer/Single Curve/ Double Curve                            26

g e n e r a t I v e    d e s i g n

Resulting design

Project by Victor Gane. A gallery section showing light modulating louvers. The corridor is parametrically adjusts to context 
and artwork. Image:: Victor Gane

Project by Sameer Kashyap louver studies responding to daylight direction in 
CATIA.  Image: Sameer Kashyap

Project by Stelios Dritsas using CATIA to model a water like shading surface. Light study in the lighting box
Images: Stelios Dritsas

Project by: Sawako Kaijima, a script generated facade panel that is based on neighbor inhibition. If one cell is open it surpresses 
its neighboring cells to be open as well. The emergent pattern were studied in the light box. Image: Sawako Kaijima

Rhino Script generated facade based on  sin 
cos function. Image: Victor Gane 	
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The author was co-instructor together with Larry Sass and Terry 
Knight. Research assistants were Yanni Loukissas and Carlos Barrios, 
Aaron Greene was the teaching assistant. At Foster and Partners, 
Hugh Whitehead, director of the specialist modeling group, Judit 
Kimpian, and Francis Aish were collaborators. 
The second workshop was much faster paced and explicitly focused 
on teaching parametric and generative modeling techniques in the 
context of fabrication. The first exercises focused on the theme of 
the workshop, the use of daylight as a design driver in architecture. 
The goal was to generate façade panels that modulate light and 
fabricate them for physical testing in a lighting box. A range of 
approaches was taken and it was particularly interesting to see how 
parametric models and script generated models resembled each 

Smart Geometry workshop series 
2003-2006.  Image above shows 
the first workshop in June 2003, at 
the Moeller Center,  Cambridge, UK. 
Founding members of the Smart 
Geometry group: Lars Hesselgren, 
Robert Aish, Hugh Whitehead, Jay 
Parish. Tutors: Axel Kilian, Chris 
Williams, Marty Dorscher, Francis Aish.
Image: Smart Geometry.com
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Free form roof exercise with hierarchical control geometry and component population
–by Axel Kilian September 2005.
–edited by Rob Woodbury October 2005.

The goal is to demonstrate a number of Generative Component features acting in concert to produce a relatively
complex model.

The objective is to create a curved roof following a spatially curving path in the landscape using only four top level
control points. The resulting model has several levels of structure or hierarchy demonstrating how parametric
modeling can yield conceptually clear and easy to manipulate models comprising complex geometric features.

Step 1. Create a new GCScript file by press the new script file button
• Arrange the windows in such a way that they don’t overlap and both the symbolic view and the

geometric view are visible as well as the GC control panel

Step 2. Save the file with an appropriate name for instance roofexample01.gcs. Do this by clicking on the save icon.

Step 3. Familiarize yourself with the view rotation in the bottom tool bar of the geometric view window
• First, zoom to fit the model to the window. The icon that looks like a mountain in profile does this.

With an empty model, you will get a single coordinate system. If you don’t do this you are likely to
create models far from the origin, which makes futures viewing manipulation awkward.

• To zoom in and out there are the + and – buttons at the bottom of the window pane. There is also an
arrow that pans. You should zoom out a few times so that you have space around the coordinate
system in which to work.

• The turquoise spinning arrow is for view rotation. To get back to an orthographic view select the
spinning arrow and switch from dynamic to “top” in the pull down menu. This is Microstation
functionality

• To shade a view click on the lightening bolt and select the desired shading mode. Most users alternate
between wireframe and shaded views.

Step 4. To begin the model select the point creation short cut (see highlight icon in image below) and place four
points in an axonometric view into the geometric model in a zigzag fashion. These points are the base for the path
that winds through the landscape. (We skip modeling the landscape here for time’s sake. Such can always be added
later and the four points can be tied to the landscape.)

Step 10. Currently the surface is constant height and width, to make it more interesting we can make it responsive to
the undulation of the path. To do so we use the edit command and replace the fix length of the vertical line of the
sections with an expression that calculated the height as a function between a maximum height of the roof and the
height of it base point.

Key Idea: It is easy to set a fixed initial value and later replace it with a dependency on other values.

• Edit the vertical line by clicking on the edit tool and then the line
• In the length field of the line subtract the Z value of the plane0001 from the fixed value currently there

for instance if it was 4 Length=3-plane0001.Z
• This will adjust the height of the roof so that it will always be exactly reach the height of absolute 3 in

global position by varying its height to compensate for the ups and downs of the path.

Step 11. Play with the move command to vary the initial four points height and position to see the roof respond. We
now have a surface, which we can use to place the elements forming a roof.

Rendered and hidden

That’s it for now. In order to be able to move the initial points you may want to toggle the BSpline surface to
“Deferred” the red triangle and click on the bspline0001 instance from the Symbolic tree mode (since it is hidden we
cannot select it from the geometry model)

Rendered and hidden

That’s it for now. In order to be able to move the initial points you may want to toggle the BSpline surface to
“Deferred” the red triangle and click on the bspline0001 instance from the Symbolic tree mode (since it is hidden we
cannot select it from the geometry model)

Tutorial material for teaching 
modeling based  parametric 
constructs. Example shown is a 
responsive roof example.
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other or differed. The biggest challenge was to translate the design 
intent into the unfamiliar language of scripting and associative 
parametric modeling in combination with having to produce 
geometry that could be used for fabrication. (Loukissas 2003)

5.1.7.3	 Smart Geometry workshops
Over the course of several years starting 2003, the author has 
taught, together with the Smart Geometry Group, generative and 
parametric modeling concepts to both students and practitioners in 
universities, workshops, and at conferences. The founding members 
of the Smart Geometry Group are Robert Aish, Lars Hesselgren, 
Hugh Whitehead, and Jay Parish (www.smartgeometry.org). The 
platform for working was Generative Components, a parametric 
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The parallel structure of interfacing 
with generative components. 
The program structure allows the 
extension of the runtime environment 
from any of the four interaction 
modules shown here.
Manual modeling, associative editing, 
scripting, and programming in C#.
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The primitive features in the system 
available to the designer.  There are 
geometric elements like points and 
lines , surfaces and solids. There 
are also data primitives such as 
single values, and single and two 
dimensional arrays. Script functions 
are also primitives in the system 
as well as programmatic features. 
All together they define  in parallel 
the interface  for the designer and 
programmer to interact with the 
system and extend it.
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How the approaches differ in defining 
the same features. The first column 
shows the geometric relationships, 
the second one the associativity  
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programming approach for defining 
a feature.
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through graphical interface created 
features, through script ed features 
and through programming based 
features.
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2005 IAP MIT GC Workshop study by 
Andres Sevtsuk.Interior roof study for 
an existing building that generates 
geometry from the position of a set  of 
attractors traveling the length of the 
roof.
The use of graphs made the 
interaction with the geometry more 
diagrammatic.
Image: Andres Sevtsuk

2005 IAP MIT GC Workshop study 
by Jeff Andersen.  Glass facade 
solution that allows the adjustment 
of the glass pane subdivisions 
parametrically.
Image: Jeff Anderson
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2005 GC workshop, Acadia conference Waterloo., Project by Judit Kimpian, Image: Judit Kimpian

2005 GC workshop, Acadia conference Waterloo., Project by Mark Cichy,  Image: Mark Cichy
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Summer 2005 design workshop at 
UFM, Guatemala City, Guatemala,.
Project by Carlos Castaneda.
A set of components is modeled to 
ride on a design surface. The strategy 
was developed to have the roof 
respond to trees on the chosen site.
components are prototyped  in paper.
Image: Carlos Castaneda

Design workshop at UFM, Guatemala City, Guatemala, summer 
2005, Instructors Axel Kilian ,MIT and Axel Paredes, MIT and UFM.

Four sites on campus were chosen and each student had to pick 
two for them and identify four points to have a structure touch 
down on it.
 Parametric structures were developed that can respond to the 
varying site conditions both through geometric adaptation 
and through conditional changes. Paper based prototypes 
were developed from the design geometries to test the part 
compositions.
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Summer 2005 design workshop at 
UFM, Guatemala City, Guatemala, 
Project by Ricky Titus.
A set of inflatable components rides 
along a central spine. The structure 
expands and contracts with the 
components. To model this behavior 
the elements reference their position 
relatively to each other propagating 
changes over the surface.
The surface is controlled through a set 
of sliders.
Image: Ricky Titus.
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and generative extension to the Microstation platform, developed 
by Robert Aish, director of research at Bentley©. In addition, 
the workshops contribute to the development direction of the 
platform in giving user feedback and a platform for discussing the 
direction of the tool in the context of teaching and practice. The 
workshops reach a small audience of geometry specialists mostly 
in Europe and the United States. Eventually it is planned to launch 

the platform as a commercial platform.
What makes the platform interesting from a teaching perspective 
is the parallel structure of the design representations available to 
work with. There is the geometric track for modeling the geometric 
dimensions, there is the associativity track that allows storing and 
editing the relationship between components and there is the 
design history that records the progress of the design and stores it 
as script. This script is also the basis for a programmatic expression 
of the design, which is the forth track. Despite its unfinished 
and un refined interface this conceptual approach works well in 
introducing students into the concepts of programming in the 
context of design.
The workshops have produced a large amount of exercise projects 

2004 Design Tooling Initiative by 
Yanni Loukissas, Axel Kilian and 
Stelios Dritsas. Project advisor: Una-
May O’Reilly. 
The study developed and gathered 
existing approaches to the creation 
of user based tools in design and 
created a web site as a forum for 
people to access and interact  with 
the information. Several larger themes 
were identified as starting points for 
learning how to program for design.
Image: Stelios Dritsas
http://destech.mit.edu/akilian/
designtooling/inetpub/wwwroot/
index.html
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2003 IAP MIT Kite design workshop 
Co instructors: Saul Griffith, Axel Kilian, 
Eric Wilhelm, Tim Anderson.
Surface patterns of the pneumatic 
leading edge tube before sewing. 
There are about 70 parts in a small 
kite and all of them are critical within 
a tolerance of a few millimeters for 
the performance and finish of the kite 
membrane.
Organization of parts and assembly 
sequences are a crucial aspect of the 
project.  Overall structures of large 
kites reach lengths of 50 feet and 
surface areas of about 260 square feet.

Images: Saul Griffith, Axel Kilian, Eric 
Wilhelm

and only a few will be shown for demonstrating the general nature 
of the two day exercises. There is little time to develop full projects 
in the framework of the workshops.

5.1.7.4	 Design Tooling Initiative
In the summer of 2003, the author, Yanni Loukissas and Stelios 
Dritsas, advised by Una-May O’Reilly, developed a website to 
gather programming and digital design related resources. The 
name of the initiative refers to the perception of programming as 
a way to extend the existing methods and tools of designers in the 
digital context. A similar initiative exists on a much larger scale with 
the processing.org community started by Ben Fry and Casey Reas 
from the MIT media Lab that developed the processing platform 
to support programming based design and create an integration 
platform for a design community to share and exchange design 
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projects and approaches. Digitaltooling only developed the 
beginning of a community during the three month project but 
it still serves as a resource to start students off with scripting and 
some of the concepts present in digital computing and design. The 
site is split into four themes, which reflect the research interests of 
the participants. The themes are bidirectional design, by the author, 
and evolutionary design by all participants. The designtooling 

initiative addresses an emergent trend in both in the academic and 
the professional field of architecture of customizing digital tools 
through programming as well as programming design specific 
applications. This is not a new occurrence but it is only now that the 
distinction between designers and toolmakers is slowly becoming 
more blurry. It could have larger implications for how design is 
supported in the digital environment

2003 IAP MIT Kite design workshop 
Co instructors: Saul Griffith, Axel 
Kilian, Eric Wilhelm, Tim Anderson.
The workshop focused on the 
fabrication of full scale power kites 
directly from surfplan, a parametric 
kite design system by David 
Aberdeen. 
Images: Saul Griffith, Axel Kilian, Eric 
Wilhelm
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5.1.7.5	 Kite building workshop IAP 2003
This independent activities period workshop at MIT focused on 
teaching surface based kite design using surfplan©, a parametric, 
fabrication-oriented and structural form finding software 
developed by David Aberdeen. Co-instructors were Saul Griffith, 

2003 IAP MIT Kite design workshop 
Co instructors: Saul Griffith, Axel 
Kilian, Eric Wilhelm, Tim Anderson.
The kite design were cut from the 
digital geometry and unfolded 
onto paper as cutting templates. 
The assembly methods had to be 
explained in detail as they are not 
integrated in the digital process.
Final full scale test by the author on a 
frozen lake. On the left, comparison 
between digital design geometry 
(bottom) and actual built geometry in 
flight (top).
Images: Saul Griffith, Axel Kilian, Eric 
Wilhelm
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Axel Kilian, Eric Wilhelm and Tim Anderson. 
The kite building workshop benefited in many ways form the 
experience developed during the architecture workshops centered 
on surface based fabrication. The geometries of the fabric canopy 
and that of a double curved façade are not too different before 
material based adjustments are made. Similar machines and 
processes are used and the scale of a kit can easily reach that 
of a small pavilion or a small shelter with length of over 30 feet 
and canopy areas of 200 square feet. Teaching proper assembly 
techniques and keeping track of parts proved to be the biggest 
challenge in the project with 10 participants building one kite 
each which consists of approximately 40 different fabric pieces 
each. Of interest was also the influence of different assembly 

Circular dependencies in the 
generative process between form 
generation, performance evaluations, 
materials, and fabrication.
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accuracies on the resultant canopy shapes. Small errors can have 
disastrous results if they occur in crucial areas of the assembly as 
for instance in the pneumatically inflated airframe which has the 
smallest tolerances. The workshop also demonstrated the strength 
of a parametric design program with integrated fabrication output 
as it is the case in surfplan that was sued for the calculation and 
pattern creation for the workshop kite design.

5.1.8	 Conclusion – Circular Constraints, Material 
and Surface

 Coordinating material properties and design geometry has vast 
unused potential for architecture. These opportunities have not 
been used in part due to the lack of digital material simulations 

Chart sketching out design at the 
intersection between different 
constraints.  These charts are 
preliminary studies leading up to 
the full experiments. The abstract 
modeling of the constraints did not 
prove to be useful. Later diagrams 
depict the exact dependencies rather 
than higher level abstractions. 
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suitable for design, but also due to the lack of the integration of 
such methods into the design process. 
The experiments address this lack of suitable simulations with 
varying success. The creation of realistic material simulations is only 
of limited use as the simulation is useful for evaluation but difficult 
to use as a design driver. The simulation of a behavior needs to 
be translated into a generative design principle in order to be 
useful as a design driver. For instance, for single curvature there 
are geometric primitives such as cones that allow the creation of 
material conform geometries. 
Another aspect that remains largely unexplored are the cross 
dependencies between parts of an assembly. The puzzle joint gets 
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A poster design by the author for  
the June 2004 exhibition of the 
concept car design workshops.  It 
depicts a set of block diagram studies   
conducted for the set of concept car 
experiments.

The exhibition concept by the author 
for the 2004 concept car show at the 
Wolk gallery. Exhibition development 
with the Smart Cities Group.

close to such an aesthetic for surface materialization, but has too 
many problems related to structural robustness to be usable. But it 
hints at the changes possible in the industry if generative methods 
are combined with digital fabrication and innovative material use. 
Ideally this can happen on all scales of design, from the tactile to 
the overall structure. 
A similar potential lies within the explorative power of programmatic 
and functional descriptions of design when linked with other 
constraints present in a design problem. 
The examples discussed in the following section are outside the 
domain of architecture, but were approached from an architectural 
perspective of design and innovation. Program played a role in this 
approach. But most importantly, it was a design exploration that 
set up and defined a design problem through the process rather 
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than refined one with a clear aesthetic target in mind. The design 
target emerged through the exploration.

5.2	 Branching Exploration: Defining the 
Constraints

The second set of experiments centers around the definition of 
a design problem. The term branching refers to the expanding 
of a design space through the exploration of different constraint 
directions as branches of the evolving design problem. The 
experiments took place around a series of workshops at the media 
lab.

5.2.1	 The Concept Car Workshops: Context
The car design discussed in this thesis was developed in the 
context of the concept car design studio headed by William J. 
Mitchell. The studio is a collaboration of the Smart Cities Group at 
the MIT Media Lab, General Motors represented by Wayne Cherry, 
as well as Jim Glymph and Frank Gehry of Gehry and Partners (in 
2003/04). The car project was initiated by William J. Mitchell, Ryan 
Chin and Betty Lou McClanahan in 2003. The author and a group of 
core participants collaborated on the project from the beginning 
up to date. They were the graduate students in the Smart Cities 
Group: William Lark, Ryan Chin, Phil Liang, Patrik Künzler, Susanne 
Seitinger, Peter Schmitt, and Raul-David “Retro” Poblano. Ryan 
Chin from the Smart Cities Group coordinated the concept car 
workshops and the exchange with General Motors. The core group 
of students outside the lab was Mitchell Joachim, Franco Variani, 
and Marcel Botha. The author has been a collaborator and teaching 
assistant for the class since its inception together with many of the 
students mentioned above. The work shown in the experiment 
is the work of the author or work done in collaboration with the 
persons as credited. 

5.2.2	 Branching Design Exploration: Defining 
Solution Space

The branching exploration works through the linking of design 
representations. Step by step this process defines the design space 
of the emerging design task.  In a set of preliminary experiments 
exploration experiments were tested aimed at expanding the 
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located in the space of the wheel.
This approach to innovation from functional groupings was further 
studied in a series of small exercises before applying this principle to 
the car design domain. The examples shown here were developed 
by the author.
•	 Writing devices.
•	 Laptop study – sketch only

5.2.2.1	 Experiment 1: Writing Device – Functional Chains
An early assignment in the workshop was the analysis of existing 
writing devices as a starting point for novel designs. The study 
is discussed in chapter three but will be discussed here in more 
detail.
One approach to creating novel designs from a set of existing 

solution space.
Changing solution space can be achieved by regrouping existing 
function combinations. For instance, Patrik Künzler from the 
Smart Cities Group developed a wheel that integrates suspension 
and propulsion. This design move originated in redrawing the 
packaging boundary of the drive train of a conventional car to be 
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that seem to fulfill all studied cases but allow for enough flexibility to describe
elements outside of the set.

The different examples can be represented as a components assembly
where with each level a component is replaced with a subset of more
complicated components that fulfill the same function. At each level the
tree describes a fully functional solution to the problem at hand, but with
a varying degree of complexity based on the implementation choices as
for instance the substance used for writing.

An attempt at a generation of a fountain pen starting with a chain of
functional requirements. A substitution of one of the functions, in this
case the writing substance triggers a sequence of dependent choices
based on the substance chosen. Ink requires a channel to deliver it,
requires a nib to deposit onto the paper etc.
After all dependencies are sorted out the next round of implementation
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Writing device study project by the 
author for an exercise in the concept 
car workshop  Spring 2004.
The analysis of the existing set of 
devices is translated into a function 
chain based on the core functions.
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designs would be a shape grammar approach. The extraction of 
rules from the existing designs in the set could be used to regenerate 
the existing set of designs as well as generate novel designs. This 
approach has been demonstrated many times in both architectural 
and product design. The problem of the approach in the context of 
this thesis is that the rules primarily operate on the geometry of the 
samples of the design set. Form is an important component of any 
design and can serve as the basis for the analysis of a set design. 
But particularly in product design, where the constraints driving 

a design are overlapping, the dependencies of the functional 
requirements are more important than geometric shape based 
compositions. At least the functional relationships play a more 
significant role in shaping form through physical components than 
in architecture. 
The author would like to suggest an alternative approach referred 
to as functional chain approach. A functional chain can be described 
as the set of essential functional dependencies triggering a set of 
designs. It is a relatively loose functional description that triggers 
design choices.

Functional analysis
The analysis of the writing devices started by identifying the most 
common denominator amongst the set of devices studied: the 

The function chain as a design 
generator for two different designs. 
The motivation for the function chain 
was the conceptual flexibility it affords 
in the progressive implementation of 
a concept.
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process of leaving a mark on a writing surface. Sorted from the 
simple to the most complex, the devices studied ranged from a 
chalk to a retractable pen to a spraying can used for graffiti. At the 
core of every device there is a substance used to leave a mark with. 
This substance may be the device itself, as in the chalk, but it may 
also be the writing surface, as in the case of a stick being used to 
draw a line in the sand. In both cases though, the device is about 

leaving a mark with a substance, even if the implementations are 
quite different. It is important to note that the examples differ in 
complexity but that difference is a function of implementation 
choices not of the basic functional requirements.
Other core functions implemented by all members of the set are that 
of handling the device to guide the marking. There is delivering the 
marking substance to where it is used, if the place of storage is not 
the same as the place of delivery. There is depositing the substance 
on the writing surface. This results in a reasonably detailed function 
chain, which in this case is more or less linear:

surface -deposit – delivery – marking – handling

A further sketch based study of a 
similar analysis for a laptop computer. 
The importance difference to 
conventional, component based 
decompositions is that the function 
chain approach triggers novel ways 
to design for a similar function chain 
without confronting the designer 
with existing components to start 
from.
Sketch: Axel Kilian from a 
brainstorming session of the author 
with Franco Variani, Ryan Chin, and 
William Lark.



192

vision

energy source

power deliverypropulsion

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

bodymotor

golfbag

ski

snowboard

suitcase

mattress

surfboardgroceries

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

vision

vision

visionvisionvisionvision

primary functions: support

secondary functional requirements:
enclosure - variable degree

tertiary functional requirement: windshield
if there is an intersection between enclosure and vision cone

sunglasses helmet wind guard on scooter full enclosure bike bmw

pickup truck with hatch old VW beetle

small car like smart larger car like van

vision

even larger - bus or train

vision

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

golfbag

ski

snowboard

suitcase

mattress

surfboard

groceries

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

vision

ski

snowboard

mattress

surfboard

groceries

energy source

power deliverypropulsion

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

bodymotor

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

ski

snowboard

mattress

surfboard

groceries

energy sourcein
te

rface

accelerate

break

steer

hands

feet

eyes

speech

body

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

energy source

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

body

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

energy source

power delivery

propulsion

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

body

engine

motor

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

ski

snowboard

mattress

surfboard

groceries
power delivery

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

body

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

ski

snowboard

mattress

surfboard

groceries
energy source

propulsion

engine

motor

power delivery

propulsion

engine

motor

in
te

rface

co
n

tro
le

r

accelerate

break

steer

hands

feet

eyes

speech

body

sunglasses

PDA

cup

snacks

purse
/b

ag

cellphone

ski

snowboard

mattress

surfboard

groceries

energy source

power delivery

propulsion

engine

motor

power delivery

propulsion

motor

power delivery

propulsion

motor

power delivery

propulsion

motor

power delivery

propulsion

motor

power delivery

propulsion

engine

motor

chassis connections

chassis connections

seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.

There seems to be in some cases an additional function at the end 
tip like an eraser or a cap holder. This could be generalized into 
two additional functional requirements: removal and storage. The 
expanded chain would then look like this.

surface-deposit – delivery – marking – handling – removing – 
storing

It becomes clear that the complexity of the functional requirements 
quickly grows as the analysis moves forward. The study reveals 
that even a simple device has considerable complexity. In later 

studies connected to the car, alternatively functional networks 
are introduced to address this issue, but complexity remains a 
challenge. This applies all the more to architecture of course.
The function chain resulting from the analysis now provides a 
starting point for addressing the functional requirements involved 
in creating a novel writing device. This process takes place before 
considerations of form, addressing the base architecture of the 
device. Only then will the base architecture drive the development 
of the geometry.

Implementation
After creating the functional chain the first step in creating a novel 
design is the implementation of one of the functions. For instance 
a first step could be an implementation choice for marking, for 
instance a substance. The first implementation choice can be 
considered the design driver. A design driver is a constraint that is 
applied to a design exploration that is left unchanged and guides 
the exploration.

Relationship between design triggers 
and component implementations. 
The windshield can be viewed as a 
secondary design response brought 
about by the need to shield from the 
wind while driving and the need to 
see. Those two variable geometric 
entities create the demand for  
transparent wind protection.
With varying scale of the enclosure 
and position of the eyes to the 
enclosure different design solutions 
have emerged. To describe this 
set with a dimensional variable 
component would not satisfy all 
design variations.

sunglasses helmet wind guard on scooter full enclosure bike (BMW© C1)
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seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.

for removing function would lead to a symmetric implementation 
of the function chain with two back to back marking choices one 
for ink one for ink removal. The storage functional could be fulfilled 
with a simple protector cap. 

Design choices
At this point, the established implementation chain needs 
design choices. Up to this point, form factors have not yet been 
considered. 
Through the design choices, the implementation choices can 
be dimensioned. This happens according to the same process 
described for the implementation choices. The design choices ripple 
through the implementation chain. This ensures that dimensional 
dependencies are propagated correctly. Once established, the 
dimensions can be controlled parametrically to create dimensional 
variations. The chain sequence can be geometrically altered or 
packaged differently as long as the functional dependencies are 
fulfilled.

In the example, a standard substance like ink might be chosen. 
Substituting the functional requirement with an implementation 
choice triggers neighboring functions of the chain, in this case 
delivery and handling.
For the handling function, a simple choice is a tank. For delivery, a 
capillary tube might work. The next step, the deposit requirement, 
might be answered by branching into a variety of choices: a felt tip, 
a sponge pointing towards a felt tip pen, or a magic marker-like 
device. Or it might be left unimplemented by turning the design 
into a quill. We are left with the remaining links of the functional 
chain: removing and storing. Choosing an ink removing substance 

Small car like Smart Large car like a van Inside a bus or train
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seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.

In conclusion, the function chain approach provides a robust, 
high-level approach to design generation from a set of existing 
designs with a focus on functional requirements as design drivers. 
Once established, the function chain drives the geometric design 
implementations.The principle of function chains is not fully 
externalized at this point. But function chains help to capture 
known design approaches to a problem in an implementation 

independent way. By unpacking and regrouping the functional 
descriptions innovative solutions can be generated.

5.2.2.2	 Experiment 2: Functional chains for the car design 
domain

The approach of extracting function chains, or in the case of more 
complex dependencies, functional networks from existing designs 
proved very powerful. There are several ideas for design exploration 
that developed from it. First the reduction of existing design 
solutions down to their lowest possible functional denominator 
that captures the essence of the existing solution but goes beyond 
a component description. For instance in the simple example of the 
windshield for a car it is visible how the wrong kind of abstraction 
of the functional description will prevent design variations from 
emerging. The windshield as an object does not really exist in a 
functional description. It rather is a secondary reaction to the 
overlap of the primary functional requirements of vision of the 
driver and enclosure from the elements. The windshield occurs in 
most existing designs at the overlap of the vision cone demand 

The development of a functional 
network was continued for cars. The 
grouping of driver centric functions 
and functional needs is the first step 
for a design response.
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seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.
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seat development

seat is treated as furniture - the door almost as an
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The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
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Different configurations of the same 
functional networks to serve as 
starting points to formulate functional 
demands and implementations.
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and the non transparent envelope enclosure. The emergent 
function requirement trigger a new secondary requirement of a 
transparent, wind resistant panel that conforms to the vision cone 
and replaces the envelope with a structural transparent material. 
In a linear interpolation of enclosures from a minimal solution 
of sunglasses over motorbike helmets, motor scooter shields to 
cars and eventually fully enclosed spaces like trains or busses the 
object windshield does not persist. Rather the design requirement 
from the overlaps triggers different design solutions from a pair of 
glasses to the disappearance of the object all together. A functional 
description with the node “windshield” would fail to capture this 
variety or worse, prevent an exploration of different solution by 
enforcing a design convention of existing solutions.
The functional graphs of the door studies follow a similar pattern. 
The drive train and passenger ones show how the increased 
complexity creates a bigger challenge in reading and working with 
the method. Here it is very well understandable how the graphic 
bundling of existing functions into new functional units, such as 
Patrik Künzler’s initial robotic wheel design, can be triggered from 
diagramming the function graph.

5.2.2.3	 Experiment 3: Exploration driven by functional 
constraints

The preliminary experiments leading up to the car experiments 
were testing how to set up an exploration for defining a design 
problem. The experiments helped to establish the notion of the 
branching exploration type. The branching exploration would 
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identify the functional constraints and possible design drivers for 
defining the design problem. In case of the car it was the type of 
program and usage scenario and the functions a vehicle would 
have to fulfill. The first set of experiments focused on product 
design examples to test less complex entities first.
The motivation in working with functional descriptions was to 
overcome the component-based decomposition of products, 
typically used as a starting point for new design generations. In 
contrast, a functional analysis implies careful choices of abstractions 
in order to trigger possible innovation. This is different from the 
component-based approach leading to incremental variations in 
the design.
The preliminary design experiments focused on a number of 
exploration techniques to trigger the rethinking of existing design 
solutions.

Block study of car configurations  built 
by Gaston Nogues in collaboration 
with the author. at Frank Gehry and 
Partners..

The work area dedicated to the car 
during the visit of the author in the 
office in November 2003.
Images: Axel Kilian
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•	 spatial functional recombinations - seating arrangement studies
•	 ingress/egress studies – door studies
•	 chassis integration - frame orientation

5.2.2.4	 Experiment 4: Block massing studies.
Prior to the detailed design studies, precedent research was 
conducted within car design, focusing on the potential of 

key functional and architectural components for pushing the 
development of the architecture of the car. The car project was 
originally set up in collaboration with Frank O. Gehry with the 
intention to introduce aspects of the architectural design process 
into the car design process. The first attempt was to test massing 
studies similar to block diagrams in architectural sketch design for 
the programming of a car. Since drivers and passengers constitute 
a major factor in the layout of cars, the person envelope was chosen 
as the starting point. The physical building block models proved 
useful for quick physical interaction with the design variations 
but had limited flexibility of the very tight programmatic overlay 
of car design. The digital version proved to be more flexible. The 
massing wood model was built by Gaston Nogues from Gehry and 

Combinatoric tree study putting the 
passenger configuration at the center 
of the design exploration.
Tree study by the author from a brain 
storming session together with Ryan 
Chin and Franco Variani.
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Partners in collaboration with the author. The initial block study 
was developed by the author, Ryan Chin and Franco Variani.

5.2.2.5	 Experiment 5: Seating arrangement as a driver for car 
architecture

In parallel with the physical block studies, digital combinatorial 
studies were done by the author. The explorations were driven by 

an interest in grammatical explorations of car designs using rule-
based methods related to shape grammars. To simplify the exercise, 
the space required for an individual person was initially abstracted 
as a simple box.
One outcome was a tree of car configurations driven by the social 
configuration of the driver and passengers within the vehicle. The 
majority of current cars are situated in the square, four passenger 
seating arrangement. The combinatorial approached proved to be 
useful to quickly iterate through a large number of variations of 
car architectures without investing into design details and styling 
up front. A parametric model was built in CATIA® that allowed 
the reconfiguration of the vehicle based on the positioning of 
the passengers. This was a powerful proof of concept, but far too 
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A section of the tree shows the 
different combinations of a single 
person represented by a volume of 
occupancy box with the different 
combinations of wheel and power 
train. After these combinations were 
generated it was easy to find designs 
that already implement them. It was 
interesting to see that the range of 
implementations went well beyond  a 
conventional car.
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limited as a design explorer due to the rigidity of the parametric 
model. The model lacked the necessary generality in the definition 
of the parametric relationships.
The initial experiences with grammar-based, explorative and 
relatively unfocused design approaches later led to more specific 
design tasks responding to groups of functions. Two of these 
designs developed within the concept car studio were the “City 
Car” and the “Athlete”.

5.2.2.6	 Experiment 6: Block diagrams – seating charts
From the combinatorial arrangements of the seating components, 
a quick tree of possible seating arrangements was generated, 
allowing a fast overview of the possibilities. The possibilities are by 

Foam core studies of different 
passenger wheel configurations. Both 
passengers and wheels are modeled 
as minimal occupancy volumes. The 
wheels take into account steering and 
suspension movement..
The structural platform is built to 
allow for extension of the chassis 
in both length and width to fit the 
different configurations.



202

The first schematic parametric models allowing for the variations of the 
passengers. The graph shows the same model with passengers distributed 
differently.

First studies of modeling frame and envelope details to respond to the 
passenger configurations.

The latest model series with fully modeled surfaces and chassis frame structure 
and hydrogen storage tanks in the sandwich type floor.
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no means exhaustive, nor are they all feasible, but they provide a 
fast way to generate possible starting points for investigations.
After the tree was generated, examples were quickly found for most 

Two variations of the same parametric 
model showing the adaptation of the 
chassis with the additional passenger.
The biggest challenge in this 
parametric study was to model all 
geometry in a way that consistently 
functions in all cases and without 
variations in the continuity of 
curves and surfaces. This model was 
developed in the spring of 2004 by 
the author using CATIA V5R11 and a 
Z-corp three dimensional printer.

Detail of the CATIA parametric 
study. The model allows for the 
reconfiguration of passengers all the 
way from one to four passenger in 
any front facing configuration. The car 
envelope is parametrically adapted 
to fit the new minimal volume to 
enclose the passenger. This also  
affects the storage hydrogen tanks in 
the sandwich floor. If the car width is 
sufficient to store them side by side 
the are placed in parallel, if for a one 
person version the car is too narrow, 
they are stacked in a pyramid. In 
addition all proportional parameters 
such as window lines or roof heights 
are editable.
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of the generated configurations. This proved the validity of the 
approach as way of sorting and triggering different combinations 
for further study.
A fully parametric model was constructed for the tree combinations 
using a simultaneous representation of all four passengers. A 
so-called rubber band structure allowed for the use of a fixed 
topology while changing the number of passengers within the 
same parametric model.
This approach proved still too limiting for the explorative, idea 
generating approach. In order to be explorative the process could 
not just be limited to top down combinatorial approach.
An alternative emerged from several different projects in the 
class most notably from the first designs for a hub less wheel with 

One of many ingress/egress studies 
developed by the author. This one 
is a selective prototype to challenge 
the notion of a car seat as a piece of 
furniture. Instead the seat bucket is 
attached to the door to aid in getting 
in and out of the vehicle, and the back 
support is attached to the vehicle roof. 
This split of the seat offers interesting 
alternatives to interior and exterior 
designs of vehicle. It was triggered by 
thinking in terms of functional chains 
of the functions of weight support, 
egress/ingress and safety from side 
impacts.
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integrated motor and suspension by Patrik Künzler from the Smart 
Cities Group. The approach can be generalized as the regrouping 
of existing functions in to new functional components. The new 
groupings of functions define the requirements for any needed 
components. Packaging and spatial relations of the functions 
change as well as the overall function of the design solution.

5.2.2.7	 Experiment 7: Door-seat relationship
In a series of studies for ingress and egress, functional regrouping 
led the author to rethink the role of seat as a functional entity similar 

¼

A design exploration by the author 
challenging the notion of horizontal 
frame structures for modular car 
designs such as the GM “Autonomy”. 
skateboard like car platform.
Instead it is proposed to stand up 
the structure vertically and attach 
seat door combinations as snap on 
components from the outside.

The autonomy concept by GM 
modeled by the author in CATIA. 
The platform integrates power train 
and energy storage and frees up the 
passenger compartment from those 
functions.
The author proposes an alternative by 
suggesting reintegrating the vehicle 
components vertically while still 
offering similar flexibility.
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to furniture and challenge its design as an object. The split of back 
rest and seat bucket led to a new interior design. The seat bucket 
is attached to the door frames and swings out with it, aiding in 
egress, and the backrest stays connected above to the roof forming 
part of the safety cell.
Although this design has many disadvantages, it is successful in 

challenging the concept of car seats as furniture within a living 
room like interior. The design contrasts the conventional seat 
design with a more integral, composite design. Through its new 
sub-components, it responds to several other previously unrelated 
functional constraints as well.

A design evaluation of the 
performance of a tricycle design by 
the author. This is programmed in 
C++ in the open dynamics  engine, 
an open source rigid body dynamics 
simulator. The approximate physics 
based behavior allows a quick 

assertion about stability of a vehicle 
sketch before prototyping. The 
first study is the one wheel athlete, 
discussed later in this section. The 
second study is the full sized athlete.
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5.2.2.8	 Experiment 8: Switching the frame orientation from 
horizontal to vertical

Another such move was the switching of the chassis from its 
dominantly horizontal orientation to a vertical orientation that frees 
the floor for novel egress and ingress designs. The structural shift 
frees the floor of structural functions and allows for door designs 
that withdraw the floor in order to create comfortable ingress and 
egress solutions for instance for the elderly.

5.2.2.9	 Experiment 9: Performance studies
A number of the vehicle concepts were modeled in a physical 
simulation engine used for computer games that approximate 
rigid body dynamics and physics in a simulated three dimensional 
environment. The boxes represent the generalized masses for the 
vehicle and constraint relationships position the blocks in space 
and allows for controlled articulation of the joints.

A vehicle interaction study based on 
the question: What happens if vehicle 
can bump up into each other? This 
study built upon the idea of “gentle 
congestion” by Mitchell Joachim 
imagining soft cars.
Design study by the author in C++ 
using the ODE environment.
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the number of cars heading towards 
them. Once the cars reach their 
destinations they keep circling the 
block. The goal was to study the 
interaction of density and traffic.
Project by the author in processing.

Behavioral studies of simple vehicles 
within a street grid. The study was 
implemented to track traffic effects  
from the interaction of vehicles. 
Implemented in processing.
Below, the grid is populated with 
buildings. Their volume represent 
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Three dimensional view with the 
breaking behavior of the cars at 
intersections.

A larger destination grid model.
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The advantage of this approach is that it is possible to quickly 
test the stability and performance of the vehicle designs without 
physical prototyping. This evaluation step can become part of 
the generative cycle of exploration and give input to the design 
direction. The performance studies were programmed in C++ 
in the open dynamics engine (ODE), an open source rigid body 
dynamics package. (ODE 2006)

Exploration of different emergent 
traffic patterns under changing 
constraints.  
Most constrained on top, least 
constrained on bottom.
Programmed in  processing..
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5.2.2.10	Experiment 10: Behavioral studies
In parallel to the physical performance studies the author 
programmed behavioral studies that look at emerging traffic 
patterns from rules in the interaction simulated vehicles. The initial 
studies were based on grided street patterns and vehicle that 
would keep a certain speed dependant minimum distance from 
the cars in front of them. This safety envelope and the interaction 
of traffic patterns with the intersections create emergent traffic 
patterns. Similar studies have been done for a long time with the 
turtles programming concept developed at the media lab.
In an extension to the simple traffic patterns destinations were 

A small design exploration of a vehicle 
detail for the “zero car” developed by 
the Smart Cities Group.
The goal was to develop a detachable 
and angular adjustable wheel frame 
connection. Through several design 
iterations and prototypes a rail track 
solution emerged that allows for fast 
attachment and detachment of the 
arm. These small design explorations 
were not formally modeled for this 
thesis but exhibit many of the same 
traits of branching explorations as 
the main vehicle design exploration. 
Connection studies by the author
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added for each vehicle and the turning behavior was based on 
minimizing the distance to the target in the city. Each target would 
generate a floor of a block like structure in the three dimensional 
model to simulate a very simplistic reversal simulation of traffic 
triggers building. This was developed to study traffic behavior with 
increasing congestions and dependency on urban densities. The 

An articulated seat back study 
developed together with Patrik 
Künzler from an initial idea of a 
wearable seat that protects the 
passenger. This variation here tests 
a mechanical solution through laser 
cutting and plexi.
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Opening chair back in CATIA.

Opening back in foam core sketch 
model

Sketch of initial design.

Articulated plexi assembly. Model development with Patrik Künzler.
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seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.

behavioral studies wee programmed in the processing environment 
(Fry and Reas 2006) in JAVA through the creation of vehicle objects 
with built in behavior based on street color patterns.

5.2.3	 Selective Prototypes
The egress ingress design studies were the first instance referred to 
the thesis as selective prototypes. A selective prototype addresses a 
design problem mostly isolated of neighboring constraints in order 
to more easily come up with a novel solution that is not passed on 
conventions enforced by the context of a local intervention. For 
instance, it is very hard to come up with a new door solution if one 
starts from the chassis of a conventional car. Most of the context 
such as seat position, height and structural openings is fixed and 
the design becomes a problem-solving exercise rather than a 
rethinking of egress and ingress. 
The following design series by the author studies the problem of 
ingress and egress focusing on one design driver a time, such as 
vertical freedom of movement below the seat, above the seat, and 

Ingress egress diagram studies.
Diagram as design driver for 
exploration.

Study one: Seat as furniture. Door 
closing the opening.

Study two: In addition to the side 
opening the roof opens as well in one 
kinetic movement. The seat swivels 
around with the floor and lifts the 
passenger to the outside.

Study three: The floor as the door. 
The opening extends into the floor 
providing room for feet to drop down.
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seat development

seat is treated as furniture - the door almost as an
architectural element closing an opening in the
envelope

Ingres egress studies conducted by the author in
diagram form.The diagram can become a design
generator.

variation on the door - the roof part opens together
with the door providing headroom

variation on the door - the floor part slides open
together with the door providing extra room below
the seat to get out

The two passengers slide sideways opening a corridor
between - the acces to the seat is from behind.The
opening closes by pushing the two halfs together
again

The door opens in the front lifting like a clamshell
taking the windshield with it - access is by climbing in
from the front.

Seperation of the seat into a backrest that extends
from the roof and stays fixed and a seatbucket that
swings out with the door and floor. Overcoming the
seat as furniture and ingres through door convention.

so on.
The door studies series conjugate the possibilities of openings in 
the outer envelope without respecting other constraints. Simple 
physical, kinetic mockups were used to so, animated through stop-
frame motion to illustrate their functionality.
The door studies developed were:

5.2.3.1	 Experiment 11: Drawer door
A simple drawer-like door replaces the hinge with a sliding track 
below the seat to allow for the horizontal movement of the entire 
seat ensemble out from the car. The advantage would be easier 
ingress and egress with combined door and seat movement. The 
disadvantage is the space requirement beside the car, as well as 
large structural levers.

5.2.3.2	 Experiment 12: Rotation platform doors
The rotation of the door floor combination offers the possibility to 
access the seat directly and link door opening and seat orientation. 

Study four: An architectural solution 
for accessing the seats. The car splits 
in two along the middle and the parts 
slide apart, revealing a corri-door to 
walk to one’s seats. The sides stay 
closed.

Study five: The clam shell design for 
one of the softcar studies. The hard 
part of the windshield lifts and allows 
access to the seats from the front.

Study six: Breaking apart the seat-
as-furniture idea. The seat bucket 
supporting the driver is attached at 
the door and swings out with it. The 
backrest stays and is attached to the 
roof acting as part of the safety cell 
structure.

All designs and images: Axel Kilian
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The platform provides room for the feet to be moved together with 
the seat. The large footprint required inside the car cabin to move 
the full assembly is a disadvantage.

5.2.3.3	 Experiment 13: Seat door integration
The seat-door link is developed into an integrated structural and 
functional unit that absorbs the force of side impact. The design 
splits the seat into a seat bucket combined with the door and the 
seat back rest, which is attached to the roof of the car protecting 
the occupant from above.

5.2.3.4	 Experiment 14: Kinetic door
The kinetic door studies the possibility of a more complex 
kinetic construct that opens door latch, floor, and a roof panel 
simultaneously in one rotational move. The complex mechanism 
offers the possibility to resolve almost the entire cabin in favor of a 
kinetic envelope that responds to the driver.

5.2.3.5	 Experiment 15: Floo-door
This door study investigates the use of the vehicle floor as part of 
the door. Opening the floor panel for access rather than the roof 
or the side panel only offers some advantages in terms of comfort. 
Once the floor is removed, the distance to the ground is that of an 
average height chair. This arrangement also has other implications 
for the overall chassis structure of the car. The implications for 
the car structure are as follows. Either the frame structure has to 

An integrated design example 
showing the vertical frame and a door 
design combined
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be tilted vertically or it shifts into the roof all together. This poses 
its own set off problems but also opportunities in constructing a 
different safety cell.

5.2.3.6	 Experiment 16: Corri-door
The corri-door is related to an architectural circulation scheme. 
Rather than providing access to each individual seat from the side 
of the vehicle, the design suggests a central access corridor at its 
center. This approach would allow for completely closing the sides 
of the vehicle, increasing crash worthiness for side impacts and 
also substantially affecting styling.

5.2.3.7	 Experiment 17: Integrating selective door mockups
The door studies led to a series of holistic car designs that integrated 

The branching exploration of the 
concept car design. Exploration 
for the establishment of a design 
problem from initially undefined 
constraints.
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the door design features. At the center of the further development 
was the integration of the floor door and the vertical chassis frame. 
These designs would not have been achieved following a top down 
approach, but are a result of the selective prototyping approach. 
The design studies for a complete car documented in the following 
section take the selective prototyping approach a level higher by 
questioning the established car architecture even further through 
selective prototyping of the frame structure.

5.2.4	 Main Experiment: The Athlete
The Athlete concept car design is a design experiment in which 
established vehicle components are replaced with alternative 
designs. This did not directly lead to better solutions than those 
that emerge from the established four-wheel, fixed chassis 
architecture, refined in thousands of engineering iterations. But it 
did help to review, question and partially reinvent some of the core 
elements of a vehicle architecture that in some ways has reached 
its limits. There is, of course, plenty of room for innovation in car 
design in terms of energy usage, active and passive safety, and the 
environmentally friendly use of resources, both in production and 
reuse. Even more important is the room for innovation in terms 
of the integration of the vehicle in the larger urban context or 
the transportation context in general. But at the same time a lot 
of design proposals have been made for those design goals and 
they tend to be somewhat repetitive in many of the core design 
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The articulated first athlete design 
by the author. Establishment of the 
main design driver for all following 
explorations: Articulation.

The foam core study shows the 
banking movement and the 
integration of egress and ingress into 
the frame design.
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aspects. 
The Athlete studies exemplify a different kind of design approach: 
one that does not try to answer the obvious questions, at least not 
in obvious ways, but rather suggests the study of an alternative way 
of motion and locomotion. This was done by looking at approaches 
from various areas of study, drawing more on robotics than on 
vehicle design. In addition, the brainstorming sessions took place in 
an interdisciplinary setting, with participants including architects, 
engineers, artists, and a doctor of medicine. 
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In the beginning of the experiments there was the motivation to 
explore and a number of design features were chosen as starting 
points... Articulation of the chassis and an artificial muscle based 
actuation system were the basis of the initial exploration. An 
inspiration for articulation was the articulated BMW© skateboard. 
The design was translated into a first articulated vehicle. The 
structural skeleton explored the mixture of soft and hard elements, 
inspired by the use of plastics and rubber in athletic shoes as well as 
by pneumatic skins found in air mattresses and kites. One can refer 
to these features as the design drivers of the unfolding exploration. 
The softness for the skin was a response to the articulation of the 
skeleton and the athletic shoe comparison a precedent. 
The main motivation of the Athlete project was to overcome the brick-
like chassis of conventional vehicles. Even the most sophisticated 
high-end racing cars exhibit, almost without exception, a stiff, 
light frame connected to the wheel through suspension elements. 
Wheels are articulated to a certain degree to allow for steering. 

A simple four hinge kinetic study 
testing the concept of joined pods 
with a wasp like hip.

The beginning of the team work 
on the athlete design through 
brainstorming sessions. All work 
shown here is by the author.
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Performance is defined by ever increasing horsepower of the 
engine, and the increase of the tire contact patch in combination 
with more sophisticated suspension systems. But why not give up 
the stiff chassis and look at the way a skier negotiates a downhill 
slope, to take one example from sports, shifting his or her weight, 
changing stance based on cornering speed and terrain conditions. 
Why not think about performance literally as performing through 
movement and graceful motion? Why cast driving as an individual 
activity and not as a shared activity similar to pair dancing?

These were some of the questions that emerged out of the design 
proposals for the first articulated Athlete car in the fall of 2004 by 
Axel Kilian. They provided the basis for the H-series group design by 
Axel Kilian, Patrik Künzler, Mitchell Joachim, Peter Schmitt, Kate Tan, 
Luis Berrios, Lorraine Gates-Spears, and Timocin Pervane. Finally, 
a partial proof of concept prototype of a three-wheeled Athlete 
called the Mini Athlete was built. It was based on a design concept 
by Axel Kilian, which incorporated the robotic wheel version by 
Peter Schmitt and the human seat by Patrik Künzler, Enrique L. 
Garcia and the author.
The design explorations by the author shown here were conducted 
not in pursuit of a specific design, but to formulate a design 
problem. The Athlete H-series is the most detailed of theses studies. 
The exploration focuses on a number of design representations 
adequate for different areas of the design. The term introduced for 
this process in this thesis is “selective prototyping”, a process that 

A variation of the jointed pods. The 
four pods can reconfigure themselves 
into a line for going through a corner 
and bundle up again afterwards. 
This is more of a swarm behavior 
than a question of chassis design. 
But it introduces the shifting of the 
center of gravity and the notion of 
coordinated, shared driving.

The idea evolved from a brain 
storming session with the group 
members: Axel Kilian, Patrik Künzler, 
Mitchell Joachim, Peter Schmitt, Kate 
Tan, Luis Berrios, Lorraine Gates-
Spears, and Timocin Pervane.
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iteratively focuses on chosen sub-domains of a design problem in 
order to develop prototypes that possibly could be fed back into 
the overall design. Eventually, the sum of such selective prototypes 
can accumulate in an overall design. In order to combine the novel 
design in the sub domains a new overall architecture may be 
necessary as well.
The Athlete design study approached the design of a car by 
questioning and redesigning parts of the established car 
architecture. These core components included the frame, the 
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envelope, the steering and the seat-driver relationship. Prototyping 
the subparts of the design allowed for the emergence of novel 
aesthetics, because the subparts do not have to comply with the 
immediate pressure of the design conventions of a complete car.
The following sketch designs go through selective prototyping 
studies for the kinetics of the articulated frame, the form factor of 
the envelope, and the pneumatic muscles.

5.2.4.1	 Kinetic constraints
Kinetic constraints were tested using a foam core sketch, 
externalizing the first rendition of what was later called the H-series. 
The mockup model served as a fast, physical constraint solver to 
capture and test an idea during brain storming. It also served as a 

The previous design gets integrated 
into the initial articulation study 
and the hip joint is created from 
it.  The design also integrates the 
consideration of actuation for 
controlling articulation.
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tangible model to explore the degrees of freedom of the wasp-like 
joint.

5.2.4.2	 Formal constraints
A series of foam core models were developed in parallel to explore 
formal constraints. These models started to develop a formal 
vocabulary for the frame typology. A series of foam core models 
were developed in parallel to the kinetic studies for the articulated 
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To further understand the relationship 
between articulation and actuation 
for the overall behavior, a servo 
driven fully actuated model is built 
by the author. It uses a stamp micro 
controller to drive the servos.
(top) Movie stills from a test run by 
the author.
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frame. In particular the hip section connection the four wheel arms 
was studied. The hip section posed the biggest challenge as it is 
the most removed from the conventional car topology.  Through 
several iterations the volumetric and proportional parameters of 
the design were refined and integrated into the visual rendering 
studies.

5.2.4.3	 Actuation constraints
The articulation of the under-constrained articulated skeleton 
is crucial to both its aesthetic and function and was explored 
with a physical actuated 1:10 scale foam model using servos to 
animate the joint constraints and controlled overall by a stamp 
parallax© micro controller. The micro controller was programmed 
in Java using the javelin© Java based chip, to go through a cycle 
of coordinated rotations for all six degrees of freedom. In addition 

Two iterations of constraint solver 
models. These models are not built 
to develop the formal aspects of 
the vehicle but to selectively test 
the interaction of the degrees of 
freedom (DOF) in the assembly. The 
entire model is assembled out of 
13 parts that are chained together 
through geometric constraints. The 
relationships amongst the constraints 
are defined through equations or 
direct mappings.

The left set is a six degrees of freedom 
model. The right an eight degrees of 
freedom version. In addition to the 
previous one it can raise itself up and 
down for parking and curves.
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the model was equipped with two motors for propulsion. The 
model was test driven and performed well in many aspects of the 
articulation but also exhibited some problems with overall stability 
due to the imprecise nature of the foam skeleton. The model was 
a design development sketch study built in less than 5 hours with 
only marginal digital modeling done up front. It set the precedent 
for the later aluminum model for the placement and functioning 
of the joints.

5.2.4.4	 Three dimensional constraint solving for six degree 
of freedom frame

The testing of constraint models for the six degrees of freedom 
articulated frame was moved into a digital constraint solver 

Engineered servo jointServo motor Animated angle constraint

The complexity of the physical 
aluminum model has increased 
substantially from the foam model 
due to the need to fabricate each part 
from a digital file and the increased 
number of engineering details. The 
model has eight degrees of freedom. 
The two new ones are to lift and lower 
the chassis during cornering and 
parking.

Six DOF digital constraint 
solver model.
Translation of representation.
Leads to redesign with two 
additional DOF.

Eight DOF redesign physical mockup 
incorporating the changes.
Change of fabrication triggers further 
design changes.

Six degrees of freedom (DOF) physical, servo 
controlled model.
Physical constraint solver
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environment inside CATIA© to better test the dependencies 
without the inaccuracies of physical implementations of the joints. 
The study let to a remodeling of the joint system to eight degrees 
of freedom in order to compensate for the non planarity of the 
four wheels in turns in the six degrees of freedom version. The 
second CATIA model shows this iteration. The design progressed 
substantially through the translation of the physical constraint 
study into the digital constraint study based on the comparison 
between the configurations of the two models.

5.2.4.5	 Fabrication constraints
The next design representation translation was back from the 
digital constraint model to a physical implementation with servo 

The study of human motion and how 
it can be mapped onto the degrees 
of freedom of the car. Building the car 
around the drivers is the goal of the 
experiment.

Study model of a seat that senses the 
movement of the drivers and maps them 
onto the chassis.
Later this design was further developed 
by Patrik Künzler, Enrique L. Garcia and 
Axel Kilian
Chair model and Image: Axel Kilian
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actuation to test the additional two degrees of freedom. The design 
was translated to a CNC machinable prototype that offers more 
precision in actuation and engineering of the parts also introduces 
new formal elements that pose possible avenues for further 
development. The aluminum model design introduced the design 
solution for the two additional degrees of freedom by separating 
the front beam supporting the front wheel from the main seat 
support. This allows the car to arch between front and back wheel 
to compensate for any non planar wheel alignment.

5.2.4.6	 Mapping movement of the body onto the frame
An inverse kinematics study was developed to study the mapping 
of two person’s movement onto the articulated frame of the 

In the next iteration, softness is 
integrated into the design. An 
integrated design study of the design 
responses so far is shown on the left. 
The soft shared cockpit follows the 
movement of the occupants and the 
movement of the articulated H-frame.



236



 237

vehicle. The animations was accomplished through animating the 
movement of the people’s skeletons first and than subsequently 
build the vehicle around those motions in an extension of the 
body layer by layer, starting with the seat and ending with the 
wheels touching the ground. The study was done to test the 
timing of human movement as a trigger for steering the vehicle 
and to understand the potential of mapping gesture onto vehicle 
articulation.

5.2.4.7	 Aesthetic development and evaluation
A series of renderings and aesthetic explorations, based on the 
previous selective prototypes, pushed the holistic design idea of the 
Athlete car idea forward. The integration of several novel concepts 
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Another iteration, this time with 
more progress in the skeleton and 
articulation areas of the design.
In addition the movement constraint 
of the drivers is introduced from the 
previous selective prototype.
Chassis  and muscle development by 
the author with Peter Schmitt.
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like the frame, the door studies, and the skin required many design 
innovations at the level of details to resolve the concept as a whole. 
This was an ongoing process and did not end with the studies 
presented here. In addition, the design studies triggered a number 
of small changes in the underlying architecture.
The design developed through a step by step expansion of design 
features and design constraints which articulated themselves 
through the translation of the design into different design 
representations. The adding of additional design branches slowly 
defined the design space of the athlete vehicle.
The design representations were:
•	 Physical mockups using foam core without digital input
•	 Digital geometry models for image rendering.

Due to the complexity of the  
athlete design the author decided 
to continue with another selective 
prototype design that reduces the 
design to one robotic wheel, one seat 
and a two degrees of freedom frame. 
The initial cardboard model sketch.
The wheel articulates around 
a universal joint pivoting point 
centered in the hubless wheel.

On the right: the relationship 
between original and reduced athlete.
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5.2.5	 Implementation: The Mini-Athlete
It was too early to consider a prototype at full scale was too early 
for the novel h-series architecture and with scaling come too many 
mass- and force-related problems.

5.2.5.1	 Selective prototype versioning to support decision 
making process – scale and complexity

At the end of the full athlete design process it was too early to 
consider a full scale prototype for the novel H-Series architecture, 
and scaling would have meant too many mass- and force-related 
problems. Therefore, the author went ahead with a series of partial 
prototypes, full-scale prototype designs, aimed at capturing the 
essential parts of the Athlete design and translating these into a 

•	 Servo actuated kinetic models
•	 Constraint solver model in a three dimensional assembly
•	 Inverse kinematics studies
Once the design had reached the level shown here the author 
decided to switch the scale and complexity level for further 
prototyping to first selectively prototype a small but complete 
functional entity of the athlete at full scale to test it. The following 
studies illustrate the scale model development.
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Further design iterations around the 
same constraints as the full athlete.
Now the exploration is shifting more 
towards a circular exploration as all 
the constraints have been established 
and the revisions focus on improving 
the dependencies of the parts in 
detail. 
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buildable, functional Mini Athlete. One of the inspirations for this 
design reduction was a three-wheeled toy with a big front wheel 
and back wheel steering. In its final rendition, the Athlete mini 
version was implemented as a group building project headed by 
the author, together with Peter Schmitt, Patrik Künzler, and Enrique 
L. Garcia and fabrication help by Phil Liang and Raul-David Poblano, 
and Brad Schiller.

5.2.5.2	 The One Wheel Athlete development
The One Wheel Athlete contains all major components of the full 
scale prototype: the robotic wheel, the seat-based driving control, 
and the articulation of the frame using pneumatic muscles. The 
driver banks and steers with the robotic wheel. The back part of 
the frame acts as a stand-in for the remainder of the frame of the 
full scale Athlete.

5.2.5.3	 Selective prototyping
The selective prototyping continued at a faster and more limited 
scope for the Mini Athlete. Major progress was achieved through 
a series of prototypes of the universal joint connecting the initial 
double arm to the wheel robot. This was later turned into an 
asymmetric one-sided arm design for the sake of being able to use 
a hubbed wheel.

5.2.5.4	 Scaled model design development
Following a rendering, an initial sketch model in cardboard was 
produced at a scale of 1:3. Based on the cardboard model, a number 
of design refinements were made to the seat and the universal 
joint connecting arm and hubless wheel. Those findings were then 
integrated into a CNC-fabricated model of the Mini Athlete at half 
scale, designed and built in about 3 weeks by the author. It involved 
a sandwich assembly of laser cut parts of Plexiglas© with milled 
foam form pieces glued together for stability.
The externalization of the design idea in form of physical models 
helped to identify problems and conceptual shortcomings. The 
rapid revision cycles in physical form moved the design along 
much more effectively than purely digital modeling could have. 
The structural and balance feedback was crucial for developing the 
design.

Connection detail between parts 

The last iteration of the universal 
connection joint 

Assembly overall

Symmetric joint assembly

The 1:2 scale digitally fabricated 
athlete study in foam and plexi
by the author.
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Exploration of wheel designs.

Final full scale design and built prototype:
Axel Kilian, Peter Schmitt, Patrik Künzler, Enrique L. Garcia.
Fabrication assistance: 
Phil Liang, Raul-David Poblano, Brad Schiller.
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5.2.5.5	 Articulated arm
For the partial athlete one wheel prototype, the articulated skeleton 
was reduced from its eight degrees of freedom to the minimum of 
two degrees of freedom  that still allow steering and banking of 
the robotic wheel. The arm in the full-scale prototype was mostly a 
test bed for carbon fiber molding and the combination of muscles 
with a universal joint. The muscles are positioned along side the 
arm and then guided through embedded channels to the four 
exit points which connect to the attachment points on the main 
support structure of the seat.

5.2.5.6	 Pneumatic muscle-based actuation
Several muscle studies were built around the air-based pneumatic 
muscles similar to FESTO© air muscles. For the prototype, meshed 
cable sleeving was used in connection with airtight tubing and 
solenoid valves to produce an electronically controlled muscle. 
It was developed by Peter Schmitt of the Smart Cities Group. The 
air muscles are extra ordinarily fast in their response time and 
comparatively light compared to their piston counterparts. The 
main disadvantage is their relative flexibility and elasticity, which 
makes high precision positioning challenging. The mini Athlete will 
test the use of 3 feet long air-based muscles for the controlling of 
steering and banking.

5.2.5.7	 Robotic wheel
At the core of the mini-Athlete is a version of the robotic wheel 
designed by Peter Schmitt. Earlier versions of the robotic wheel 
were developed by Patrik Künzler. The latest version in the mini-
Athlete consists of an integrated suspension and power train using 
a hubbed wheel design to reduce the cost for large bearings needed 
for earlier hubless designs. The robotic wheel has been used in 
many of the other design studies developed besides the Athlete. In 
this case, it is combined with the articulated frame universal joint 
to allow for banking and steering of the wheel. The choice for the 
tire reflects the need for the tire to be able to bank into corners.
The potential of the robotic wheel goes far beyond this prototype 
study. The study works well in showcasing its possibilities in a 
minimal package.

Fabrication of the full scale design in 
carbon fiber based on molds in mdf 
and soft foam plugs. All molds and 
plugs were CNC milled.  
Rim mold shown by Peter Schmitt.

Arm with channels for muscles

Carbon applied

Finished arm surface
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5.2.5.8	 The human seat
The seat was developed by Patrik Künzler, Enrique Garcia and 
Axel Kilian as a lightweight bent wood exoskeleton-type seating 
support. It supports the driver’s weight in a suspended fashion 
while allowing for the movement of the legs and the back within 
the range of motion designed into the joints. After initial design 
studies of the joints as hinged connections, the choice was made 
to use flexures instead, as they provide the combination of hinging 
and force resistance, as well as variability in the degrees of freedom 
allowed by the connection. This is important as the human joint 
does not follow simple mechanical joint patterns. The knee joint, 
for instance, follows multi-pivoting point schemes. To work against 
those joints is uncomfortable to the wearer and may cause long 

The fabrication of a larger part within 
the constraints of a limited depth mill. 
Several translations of the geometry 
are necessary to prepare it for 
fabrication.
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term damage to the joints.
The main finding in the chair design was how to construct a 
supportive structure that was chair like but driven by the unique 
requirements of supporting the bodies weight while allowing free 
movement of legs and back.

5.2.6	 Conclusion
The type of exploration in the experiments overall is referred to 
as branching. Branching stands for the development of a design 
space from the linking of design constraints into a design explorer. 
The experiments developed several exploration techniques for 
establishing a solution space or to expand it for novel design 
problems in the vehicle design domain. They were:

The molding process of the seat 
support showing the combination 
three dimensional printing for the 
interior wheel hub (design Peter 
Schmitt) and the exterior seat 
support structure in foam (design 
and implementation Axel Kilian with 
Enrique L. Garcia and Peter Schmitt).
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Finalized model. Carbon frame and wheel, plywood seat, muscle tendons piercing through the arm to control the wheel. 
Design overall: Axel Kilian. Robotic wheel and arm: Peter Schmitt, Axel Kilian Humane Seat: Patrik Künzler, Enrique L. Garcia, 
Axel Kilian.
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The author riding the wheel
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Functional chains
The formulation of a design goal from the chaining of functional 
demands extracted functional design triggers from a set of existing 
designs. The method proved to be a high level light weight design 
description at the diagrammatic stage of design development. 
As the complexity rises of the mapped functions rise it becomes 
increasingly challenging to identify general component free 
function relationships. As a visual diagram study to sort and review 
the analysis of complex function dependencies it is a very powerful 
technique.

Design exploration based on selective prototyping. 
This process helps to iteratively develop subcomponents of a 
novel idea and feed them back into a larger evolving concept form 
the bottom up. Novel architectures can emerge without having 
to break away from conventions but by reframing the problem 
descriptions.

Translations between design representations
The athlete study was mainly designed through translation 
between physical, digital and kinetic mockups that informed the 

conceptual

kinetic

engineering

design studies

full scale

Matrix of the different design 
explorations by the author over the 
course of the project of approximately 
one year..

mockups
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design variations. The translation from one representation into 
another is never a complete mapping. The gaps in the translation 
trigger a partial redesign based on the essential properties of the 
design. The repeated redesign forces the constant reassessment 
of the design based on what is continuous across the design 
representation and what is a medium specific artifact. Scale 
plays another important role in the translation as does force. The 
articulated servo based studies would not look like they do even 
using the same component at different scale as forces and motor 
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Digital model sketch

physical model sketch

digital constraint solving

physical constraint solving

form integration

full scale physcial prototype

Radial version of the design steps. 
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A digital hanging model. An example 
of a parallel exploration of constraints.

torques do not scale linearly with the sizes of components. Similar 
scale dependent factors play into proportions of designs and detail 
development of connections.
Overall the design exploration of the athlete can be divided into 
two parts. One part was the establishing of the design concept 
through a series of selective prototypes that established the 
constraints for the design problem. And in the second part, once the 
design constraints were established an exploration of refinement 
was done for the one wheel reduced athlete concept. Here the 
translation between design representations mostly served the 
problem solving of the established design idea unlike in the first 
study where it had to be created first. In terms of the thesis types of 
exploration it is a case where a branching exploration segway into 
a circular exploration.
The combination of these three methods illustrated in the concept 
car experiment forms the basis for the concept of branching 
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explorations, a way to create a design problem from the linking of 
design constraints and representations.

5.3	 Parallel Exploration: Exercising the 
Constraints

In his paper “Intelligence Without Representation”, Brooks lays out 
the state of the field of artificial intelligence (AI) in the late 1980s. He 
addresses how to define an appropriate AI problem, if any problem 
that can be solved by an algorithm is not deemed a real AI problem 
by other fields. (Brooks 1991).
The field of computation and design faces a similar dilemma. There 
is a lot of overlap between the challenges of artificial intelligence 
and reasoning in design. In fact, the two rely on each other. 
Computational design relies on computer-human interaction for 
steering and implementing design generation, despite attempts 
to define autonomous design machines (March and Stiny 1981)
Design is a process that balances an arbitrary number of factors 
and constraints from the environment to make decisions about 
how to change things in it. With increasing sophistication of the 
design process, it does so with more and more abstract constructs 
that act as intermediate representations between the idea of 
change and the actual act of changing. These layers introduce the 
possibility of playing out scenarios without actually implementing 
them, essentially the concept of design exploration. The challenge 
of design exploration is to abstract and define the constraints from 
the real world into an exploration construct as if one were to create 
a game like chess. In AI, games like chess were initially considered 
the hard problems to solve in comparison to everyday problems 
like locating an object in the world. But it turned out creating an 
understanding of the world and what surrounds us is far more 
challenging than playing a game within a defined rule set (Brooks 
1991). In addition in design the rules may change constantly even 
during the game. One can argue that design through a design 
explorer is a two stage process. First, creating an understanding of 
the world and the rules that play into the design and turning them 
into an exploration “game”; second, exercising this game according 
to the rule and constraints. In the exploration process one follows 
all the constraints or rules in parallel and the design evolves from 
the intersection of design input and system-game response.
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 The comparison to a complex game may only be applicable in 
a well-understood and well-defined exploration, where design 
becomes playing a game of exploration within a set of defined 
constraints and rules.
The main example outlined in this experiment section, the hanging 
model, comes closest to this scenario. Based on the introductory 
reference to Brooks, one could ask whether this design process 
is still design since it can be implemented through an algorithm. 
In balancing between interdependent constraints, as is the case 
in the hanging model example, the degrees of freedom allow for 
design exploration: the emergent states are unpredictable and 
unique in their response to the constraints. However, it is probably 
appropriate to include the definition and implementation of the 
constraint explorer itself as an integral part of the process, if one is 
to refer to it as design.
What follows is the sub chapter of the third type of exploration in 
this thesis. So far we have seen in this thesis the circular exploration 
that refines the constraint dependencies in a problem, the 
branching exploration that helps to establish the constraints for a 
design problem. This section illustrates the third type, the parallel 
exploration that exercises the design problem. The experiments are 
based on a final project in Rodney Brook’s and Una-May O’Reilly’s 
course embodied intelligence, and the hanging model was initially 
created together with Megan Galbraighth and Dan Chak for a final 
project in Computer Graphics course taught by Seth Teller and 
Fredo Durand. It later was further developed for two workshops 
on digital hanging models initiated by John Ochsendorf and co-
taught by the author, Barbara Cutler, Eric Demaine, Marty Demaine 
and Simon Greenwold in 2004 at MIT.
The parallel exploration experiments test the parallel integration of 
multiple constraints through Genetic Algorithms (GA), parametric 
geometry and finally through the use of Particle Spring Models in 
the form finding example. The GA is used for exploring high-rise 
structures based on building volume and for developable strips 
on double curved surfaces. Although the use of a fitness function 
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does not technically constitute a constraint, the selection process 
eventually enforces the constraint indirectly. 
The particle spring model uses a solver architecture to process 
multiple constraints in parallel. The technical models of GA 
and solvers are not limited to the example shown but can also 
be used in different types of experiments. The modularity of 
these computational models is an important aspect for the 
implementation of design specific design explorers.

5.3.1	 Search Strategies for satisfying Multiple 
Constraints in Parallel

The question of how to navigate through the solutions in a given 
design space is a major issue. The fact that constraints are present 
does not provide definitive answers in terms of design solutions. 
Any design proposal that satisfies the given constraints may still 

An attention based exploration device 
for visual data is an example of a 
dynamic design explorer. It keeps 
track of the history and displays it 
simultaneously through attention 
based scaling. Example implemented 
in Java, originally for the author’s 
SMArchS thesis in 2000..
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multi-branched browser history experiment shown here. Nodes 
are created on demand as the exploration expands in a chosen 
direction. The amount of time spent on a node is recorded as a 
weight for the scaling factor in displaying the nodes. The entire 
history of exploration is visible at all times as a tree, with each node 
visually scaled according to the time spent on it This process allows 
one to quickly to locate the nodes that were visited more often. In 
the example, the nodes are screen shots of design variations of the 
chair experiment. The approach of tracing steps of an exploration 
dynamically including different decision branches promises a 
comprehensive overview of the design history and better support 
for exploration. The example shown here is an interactive sketch of 
a possible implementation programmed in Java.

5.3.1.2	 Experiment 2: Recording parametric states through 

not fit the design intentions on other accounts not included in 
the initial description of the exploration. This is very common in 
design and in fact crucial to evolving the design target through the 
investments made in the exploration process.

5.3.1.1	 Experiment 1: Visual tracks of design exploration
A first exploration into the tracking of design history was the 

Storing parametric states of models 
in secondary control objects. In this 
case the three parameters for each 
instance of the parametric object are 
derived from the xyz coordinates of 
one of the surface based points. If 
the surface is changed all designs will 
update according to the new values.
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UV coordinates on a surface
Designing with parametric objects poses the challenge of 
evaluating the design range of possible outcomes presented by a 
parametric construct.  Higher numbers of parameters make it less 
intuitive to interact with the design construct. Parametric settings 
that are satisfactory are easily lost in manual manipulation. Design 
tables only offer the recording of series of instances of the state of 
a model but not a continuous interpolation between values. Often 
the interpolation between known states reveals the best designs 
as compromises between several optimal settings, especially with 

A three dimensional version of 
tracking multi dimensional parametric 
settings in visually memorable ways. 
the broad sampling of the first image 
gives a first impression of the range 
of possible design. The other images 
show more focused sampling of one 
of the designs. Trails of favorable 
designs can be laid down through the 
solution space.
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multiple constraints in parallel.
The example shown here demonstrates a geometric control object 
that provides a way to interpolate numerical settings for parametric 
objects and the possibility to record and memorize states of the 
parametric settings through a secondary geometry.
The first example shows a family of objects whose parameters 
are mapped to a grid of points that sample a surface based on 
regular UV spacing. Moving the UV grid adjusts the parameters 
and regenerates the object family. By increasing or decreasing 
the sampling rate around the points of interest, one can explore 
parametric variations in more detail where needed.

5.3.1.3	 Experiment 3: Recording parameter settings in 
solution space

A variation of the surface-based recording is to place points in 

Another variant of a secondary 
geometry object to store and 
manipulate instances of a design 
set. In this case three designs act as 
the input for an interpolation and 
selective sampling of the design 
ranges between the starting designs.
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1 1 1 1 1 0 1 1 ............

3,3,2,2,2Interpreted as instructions 
to generate the phenotype 
through six parameters

genome

1 1 1 1 1 0genotype 1 1 1 0

1 0 1 1 1 0

=

Total building volume as 
fitness criteria

A simplistic example of alternative 
mappings of the genotype into 
a phenotype The information of 
the genotype is used to drive six 
parameters of the phenotype - in 
this case a function generating a 
tower. The towers are ranked based 
on their overall volume. The range 
of possible parameters is limited. On 
the left a snapshot of the towers as 
they are being generated and ranked 
sequentially according to volume. 
The top 10% of the genotypes are 
reinserted into the next generation.
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space and use those point coordinates to record parameter values 
of the parametric design object. Spatial point grids in a solution 
volume can give a good sample of the range of solution in that 
value range. Focusing and widening the range of the samples can 
provide a more detailed sampling of any sub-area of the solution 
space.

5.3.1.4	 Experiment 4: Mapping parameters onto secondary 
control objects for higher parameter counts

A variation of surface-based recording of parameters is the use of 
spatial objects to track and drive parameters of higher dimensional 
parametric objects. In this example a vase with six parameters is 

Java based implementation by the 
author of the original genesys/tracker 
by Jefferson et al. It shows the current 
“ant” interacting with its environment, 
the finite state machine belonging 
to the current ant and the overall 
statistics of the current run. The black 
trail is the “sugar trail” the population 
of ants is evolving to follow.
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1 1 1 1 1 0 1 1 ............

3,3,2Interpreted as instructions to generate 
the phenotype following a simple 
growth algorithm.

genome

1 1 1 1 1 0genotype

Total branch volume as fitness criteria
=

A simplistic example of alternative 
mappings of the genotype into 
a phenotype. Use of genome 
information to determine branching 
frequency.
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used. There are three instances of the vase to act as design drivers. 
Then there is a variable number of sample designs that are the 
sample parametric objects but with parametric settings based 
on interpolations between the three driver designs. The sampling 
density and range can be controlled as well. This is accomplished 
by constructing a control surface from the three driving designs 
through an interpolated surfaces passing through the radially 
offset points. The sample parameters are obtained by intersecting 
the control surface at the sampling intervals. 

5.3.2	 Genetic Algorithm Approach 
This section addresses the use of genetic algorithms for searching 
a design solution within the framework of a parametric model. It is 
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The overall GA system for searching 
developable strips in double 
curvature geometry.
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use in design explorers. 

5.3.2.1	 Experiment 5: GA based search for developable strips
Rather than modeling a geometry directly, alternative models can 
be developed that construct geometry following a set of given 
constraints. Many such models exist based on rules or procedural 
methods for the task of determining developable strips on double 
curved surfaces.
The approach is based on a finite state automaton which is evolved 
to construct strips on the target surface. Based on the genotype, a 
phenotype is constructed. The implementation is based on a final 
project in the course “Embodied Intelligence” taught by Rodney 
Brooks and Una-May O’Reilly in the spring of 2002 
The implementation follows the paper “Evolution as a theme in 
Artificial Life - The genesys/Tracker System” by David Jefferson et 
al, UCLA (Jefferson et al. 1992). A genetic algorithm and finite state 
automata combine to evolve virtual ants to follow trails of food in 

a good example of a modular design explorer where a search engine, 
the GA, can be combined with different entities it drives. One is the 
interpretation of the GA’s genome as input for a parametric model, 
another is the definition of a finite state automaton (FSA) that is used 
to steer a strip on a double curved surface. The interface between 
the driver (GA) and the driven (the models) allows for a wide range 
of mappings making the GA method an ideal candidate for modular 
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The strip creature

The bases for the phenotype that is defi ned by the genotype of the GA 
is a so called “strip-creature” or ant that runs along the UV space and 
has two normal sensors placed at the tips of its line of ruling that is 
orthogonal to its direction of movement.
The creature can move, turn and widen and narrow its strip based on 
the FSA and the input of the environment. The goal of the creature is to 
travel along the surface leaving a strip trail where each normal pair at 
the lines of ruling is sharing a plane. If this condition is consistently met 
within some tolerance margin the strip that results is developable.

The FSA

The behavior of the creature is based on a FSA representation. The pos-
sible actions within the FSA are move, turn left, turn right, do nothing, 
widen the strip, narrow the strip. With the chosen binary representation 
in the genome a three bit representation for the action is chosen which 
results in 3 neutral actions in order to fi ll all possible states of the three 
bits.
 The number of possible states varies with different experiments 
between 2^3 and 2^4 states.  Hand designed test FSA did seldom go 
beyond 5 states but in order to give the system enough fl exibility to 
evolve the number of possible states is set intentionally higher.

The genome 

The genome is using bit representation that means the least signifi cant 
bit is on the right and the most signifi cant bit on the left. It is divided 
into segments where each segment represents either a state or an 
action related to that state. (similar to the ants assignment in the 
research assignment no.4) 
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The environment

The environment for the GA model is the UV space of a NURBS surface. 
The UV space is the two dimensional representation of the three dimen-
sional surface on a fl at plane with width and length dimensions cor-
responding to the degrees of the surface. This gives the possibility to 
operate in a rectangular two dimensional environment which is easier 
to deal with and still maps perfectly onto the original three dimensional 
surface.

The features of the surface are represented through the normals that 
are mapped onto the environment. The curvature comes into the environ-
ment through a mapping of the grid cells onto the surface.

For the environment a resolution of 50x50 grid cells derived from sam-
pling mean Gaussian curvature and normals at 50 equidistant divisions 
along uv space of the NURBS surface.

This allows for faster processing and accessing of the surface information 
in the running of the GA.  It reduces accuracy though since the sampling 
is relatively rough. But for now this model has been chosen but there are 
possibly higher resolution that would work better for the problem at hand

The input layers derived from the 
NURBS surface. 

Gaussian curvature, on the NURBS 
surface. 

Gaussian curvature mapped to UV 
space. 

Normal direction in UV space.

Strip of variable width. The 
surface normals are sampled at 
the tip of the strip. The degree 
of how well the tip of the strip 
conforms to the developability 
constraint determines the 
behavior of the strip creator. 
In addition this value serves as 
a measure to rank the success 
of the strip in producing a 



 265

A B

D C

a changing environment. The ant was replaced with a strip laying 
“creature” for finding developable strips on double curved surfaces. 
The GA algorithm is not novel but the extension to a search 
method for developable strips is developed by the author. It stands 
as an example of enforcing material constraints indirectly through 
search techniques. 

The strip creature
The GA for the “strip-creature” moves through the UV space of the 
surface and has two sensors placed at the tips of its track that record 
the normal vector at the current position on the surface. Using the 
behavioral specification in the genome, the creature moves, turns 
and widens and narrows its strip based on the FSA and the input 
of the environment. The goal of the creature is to travel along the 
surface leaving a strip trail where each normal vector pair at the line 
of ruling share a plane, ensuring the developability of the created 
strip. If this condition is consistently met (within some tolerance 
margin), the strip that results is developable. The creature is defined 
through a binary string sequence extracted from the genome. The 
length of the string is dependent on the number of states in the 
FSA. The higher the number of states, the more complex the FSA 
network of behaviors can possibly be. However, a higher state 
count is not a guarantee for a more successful creator because the 
probability for a non-functional FSA also increases.

The FSA
The behavior of the creature is based on a FSA representation. The 
possible actions within the FSA are move, turn left, turn right, do 
nothing, widen the strip, narrow the strip. With the chosen binary 
representation in the genome a three bit representation for the 
action chosen, which results in three neutral actions in order to fill 
all possible states of the three bits?
The number of possible states varies between 2^3 and 2^4 states, 
based on the experiment. Hand designed test FSA did seldom go 
beyond five states, but in order to give the system enough flexibility 
to evolve, the number of possible states is set intentionally higher. 
Based on the Jefferson paper, the FSA was designed to execute one 
of the three behaviors based on environmental input. In this case 
the input is the Gaussian curvature of the surface.

A diagram of a four-state finite state 
automata (FSA). The automata stores 
its state and based on external input 
can switch states along the transition 
lines. This principle allows for complex 
behavior from a limited number of 
inputs from the environment. 
For instance a human could be 
described as a four state finite state 
automata with the states:
hungry 
sleepy
tired
refreshed
with food and sleep being possible 
inputs from the outside. The same 
external input has a different effect 
if the automata is in the state sleepy 
compared to hungry. Both sleep and 
food can shift its state to refreshed.
In the example the input is the 
curvature of the surface.
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The genome
The bit representation of the genome places the least significant 
bit on the right and the most significant bit on the left. It is divided 
into segments where each segment represents either a state 
or an action related to that state. The genome is a binary string 
representation of the following table based on the Jefferson 
paper.
The genome is represented as a string of bits
0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 ......

Where the bits are assigned the following meanings
Start state new state action new state action

000		   010		   011 	  001 	  001

This can be expanded to a transition table 
Start state old state input new state action

000   	  001   	  0   	 010       011

001  	  1   	 111       010

  		   010   	  0   	 011       010

  		   010   	  1   	 111       010

  		   011   	  0   	 011       010

  		   011   	  1   	 111       100

A mixed model
The genome describes a transition table that defines the FSA. 
When the FSA is presented with input from the environment (in 
this case the surface), a state change is initiated and the action 
associated with that state change is executed. The action controls 
the movement of the strip creature on the surface. The creature 
writes a trail of step coordinates across the UV surface for a fixed 
number of cycles. Its method of taking inputs from the environment 
resembles the way Braitenberg vehicles (Braitenberg 1984) sense 
their environment, using two sensors with a space between them. 
The model incorporates several different models previously 
explored and combines them into a design explorer to generate 
developable strip solutions. In order to be able to compare the 
different strips that are being generated, an evaluation function 
is used to compare them. The length of the steps taken by the 
creature depends on the curvature of the grid cell at the time it 
takes the step. The larger the curvature, the smaller the step sizes, 
with 1.5 being the smallest step and 2.5 the biggest. 
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The strip creature

The bases for the phenotype that is defi ned by the genotype of the GA 
is a so called “strip-creature” or ant that runs along the UV space and 
has two normal sensors placed at the tips of its line of ruling that is 
orthogonal to its direction of movement.
The creature can move, turn and widen and narrow its strip based on 
the FSA and the input of the environment. The goal of the creature is to 
travel along the surface leaving a strip trail where each normal pair at 
the lines of ruling is sharing a plane. If this condition is consistently met 
within some tolerance margin the strip that results is developable.

The FSA

The behavior of the creature is based on a FSA representation. The pos-
sible actions within the FSA are move, turn left, turn right, do nothing, 
widen the strip, narrow the strip. With the chosen binary representation 
in the genome a three bit representation for the action is chosen which 
results in 3 neutral actions in order to fi ll all possible states of the three 
bits.
 The number of possible states varies with different experiments 
between 2^3 and 2^4 states.  Hand designed test FSA did seldom go 
beyond 5 states but in order to give the system enough fl exibility to 
evolve the number of possible states is set intentionally higher.

The genome 

The genome is using bit representation that means the least signifi cant 
bit is on the right and the most signifi cant bit on the left. It is divided 
into segments where each segment represents either a state or an 
action related to that state. (similar to the ants assignment in the 
research assignment no.4) 
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A genotype is extracted from the 
genome. A program can be written 
to interpret the information found 
there as a finite state machine. In 
this example the FSA instructs the 
movements of the strip creature 
based on input from the world.
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The evaluation model and fitness function 
With each step the creature takes, it calculates the amount of grid 
cells that are covered by the latest segment. The fitness function 
measures the deviation of the normals at the tip of the strip from a 
plane as a measure of developability. The covered area in the strip 
step is scaled based on how close the strip is to being developable. 
A better fit creates a higher score and therefore a better fitness. If 
the normals are co-planar the scores of the gird cells covered by 
the last segment get added to the total score of the phenotype. If 
the normals are not co-planar then the grid cells covered are not 
counted. This was a design decision in the system in order to allow 
for regression that is for incremental adaptation of the strips to the 
surface. If the creature were not allowed to move when it did not 
fulfill the normal condition, most strip creatures would get stuck at 
certain points on the surface.
With the possibility of not fulfilling the normal condition and being 
punished for it through the fitness measure, the evolution should 
select the strips that are more developable. The strip creature 
behavior can adapt and improve from generation to generation.

The evolution process using point mutation and crossover
Mutation of the genome takes place after all individuals of a 
generation have run on the surface and their scores recorded. 
The top 10% of the individuals are stored and subjected to point 
mutation and crossover. The probability for point mutation is 1% 
per bit. Different probabilities can be set to increase the likelihood 
of mutations. The initial crossover was a three point crossover; in 
the later runs it was changed to be one crossover. A set of randomly 
picked genomes are selected, and split at three randomly chosen 
locations. The resulting pieces are swapped and combined with 
their counterparts from the other genome and two new genomes 
result. Point mutation simply selects a single bit and flips it based 
on a variable probability. 
The resulting mutated genomes are inserted into a new population 
of randomly generated genomes. This is an important part of the 
evolutionary process that adds new variations to the pool. If the 
evolution were run with the selected top 10% of the genomes, there 
would be stagnation over time. For this experiment, runs with both 

Mutation of the genome by means of 
crossover.



268

using 1% probability of point mutation and three point crossover, 
a range of strips could be observed not based on scores alone 
but instead gathered visually based on appearance of the track 
pattern. The stripes are the result of 1000 steps of the creature on a 
50x50 grid. A common result was a centrally located patch formed 
by the strip running in circles around it and wrapping back onto 
itself. Another type was the diagonal pattern with strips dividing 
the UV space in roughly parallel strip patterns. This type must act 
relatively isolated from the surface feature inputs in order to run 

point mutation and crossover mutation were used, as well as runs 
with only point mutation. Because the focus of the experiment is 
on demonstrating the approach, the results are omitted here for 
brevity as they did not show any significant differences. 

The resulting strips
After running the GA with 1000 individuals for 200 generations 

One reasonable result from a run of 
the GA. The problem is though that 
the most successful strips are the 
ones that have evolved to ignore the 
surface traits and just move straight 
for maximum distance.
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straight for such a long time. Since the surface is toroidal, it can be 
covered with one strip that wraps around over and over without 
changing direction. 

The crisscross pattern 
The strip conforms to the surface features and follows ridges and 
folds caused by the toroidal surface model that cut across the UV 
plane from different angles. This is the most promising output, 
although it is very chaotic it does open up the opportunity of a new 
approach to subdividing the NURBS surfaces with strip patterns 
that emerge from the surface features.

Strip results
The strips on the surface present a wide variety of shapes and 
forms and it is difficult to evaluate them. One method is to look at 
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the scores and therefore see their overall compliance to the normal 
test. That gives some measure of how successful the individual was 
in constructing a phenotype in the surface environment. However, 
there are functional and stylistic considerations that are not 
necessarily captured by a simple ranking like the current scoring 
implementation.

Ranking
The diagram ranks the produced strips based on the resulting scores. 
The somewhat parallel/diagonal strip pattern can be seen high 
on top the scale. Crisscrossing strips dominate the upper middle 
region where the creature follows the surface features directly by 
turning and varying its strip width and thereby weaving a pattern 
across the surface. In the lower middle region one can find circling 

Competition entry to the Busan tower 
competition, 2004.
Team: Axel Kilian, Michael Fox, Elite 
Kedan.
The further development of the tower 
by the author led to the interest in an 
integrated form finding approach. 
The following  studies show structural 
frame explorations of this project.

Facing page:  One of the original 
 competition panels submitted by the 
team.
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Form and force study for the design 
entry for the Busan competition.
Graphic statics were employed 
to create bidirectional constraint 
geometries that allowed for the live 
exploration of the interaction of 
force and form polygon using the 
bidirectional solver in CATIA.
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strips, which scribble across the surface and often intersect their 
own path, creating knots and large blobs of surface patterns. By 
creating a scale, it is possible to fine-tune the results by adjusting 
the score region that is selected for reproduction to a region that 
contains the individuals with the desired results. Of course it is not 
guaranteed to produce only strips of that kind because diagonal 
types that do not perform as well are also selected. 

5.3.3	 Main Experiment: Digital Hanging Model
The following sections are based in part on the paper “Combining 
Form Finding and Fabrication” published by the author at Acadia 
2004 (Kilian 2004).
Form finding environments shift the focus to the design of 
systems rather than geometries. Physical hanging models are 
very compelling design devices. But a number of factors limit 
their use for designers. First, they need to be relatively large 
in scale to give accurate results and allow measurements with 
reasonable tolerances. Equilibrium solutions can be scaled if the 
proportional distribution of mass is kept and the geometry of the 
lines of forces is scaled proportionally. This holds true even though 
mass does not scale proportionally to geometric dimensions. The 

Different views of a selective 
prototype of a part of the theater in 
the sky section for the cantilever of 
the Busan tower.
Physical models from digital 
geometry.
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results of the physical model are therefore usable for a full-scale 
building design, at least as a starting point. But the amount of work 
needed to construct a fully detailed hanging model is large. Also, 
it is a very time consuming task to adjust the model when larger 
changes within its geometry occur, as the model is inherently 
interdependent. A small change can ripple through large parts of 
the model requiring adjustments which themselves cause shifts 
elsewhere.  The model will eventually find a state of equilibrium, 
but it is not guaranteed that the new state matches the desired 
form. This may require several iterative adjustments.
The second major disadvantage is that a physical model is hard to 
measure accurately and in reasonable time, as measuring requires 
physical access to the model. The measurement of forces within 
the strings of the model is even more difficult, as it requires the 
installation of strain gauges, which is time consuming and can 
potentially disturb the model. In addition, the measurements are 
not part of the design process. The design is frozen to allow for 
iterating through the load measurements throughout the model 
in a given state. If one ignores a small earlier hanging model, 
Colonia Guell was Gaudi’s only design developed with the aid of a 
hanging model. The model was produced between 1898 and 1908 
by a highly qualified team. (Tomlow, et al 1989)
The digital version, in contrast, allows simultaneous measurement 
and creation as well as editing of geometry.  These measurements 
can directly drive other dimensions in the model. In the digital 
model, editing and creating the string weight is less limited by 
the availability and preparation of the physical material, which in 
the case of a complex model can slow the process. Furthermore, 
the use of generative techniques allows for the rapid placement 
of complex string constructs and allows the observation of their 
behavior before investing time into an elaborate physical model.
Finally, it is possible to create the topology of the model in a frozen 
state to establish the pure connectivity of the model and to then 
subject the model to simulated gravity and observe the form that 
emerges. This is a substantial advantage over the physical model, 
where gravity cannot be suppressed, which makes topological 
layouts harder to manage.
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5.3.3.1	 Physical form finding precedent
The work by Gaudi and others has already been discussed in the 
introduction chapter and in the precedent chapter. The following is 
a short a reiteration in the context of parallel exploration.

Antonio Gaudi’s hanging models
Antonio Gaudi developed integrated design exploration the 
furthest by developing physical design models to explore, store 
and calculate his designs in a collaborative, physically shared 
approach. He relied on physical space as his computational 
environment, as gravity and strings enforce axial force conditions 
through their interaction. But as shown above, he did not stop with 
merely finding or optimization of geometry. He also interpreted 
the resulting forms and treated them architecturally, an important 
step to not slavishly follow every detail of the abstract model but 
rather knowledgeably replace and adjust, and ultimately heighten 
the architectural reading of the desired space. All executed within 
the design intention embedded in the hanging models design 
exploration.
Hanging models enable the designer to determine the optimal 
form of structures carrying loads purely in compression, particularly 
those that mainly consist of vaults. (Tomlow et al 1989) Although 
Gaudi’s hanging models are the best known examples, earlier, 
less sophisticated attempts with hanging models were made by 
Heinrich Huebsch (1795-1863) and Giovanni Poleni. (Tomlow et al 
1989) 
For some of Gaudi’s projects like Sagrada Familia (not derived with 
a hanging model but from a staking plaster model), the translation 
of the force diagram into form was guided by two constraints: The 
extrusion process of the plaster model building, and the technique 
of a stonemason to build surfaces with straight lines of ruling. 
Therefore, Gaudi’s Sagrada Familia combines two design constraint 
models coming from different ends. One is the overall structural 
geometry designed to be in equilibrium and in compression only, 
the other is the mode of construction using ruled surfaces only. 
There was a strong parallel between the work of the plaster mould-
makers and the actual full-size construction of the window (in 
the Sagrada familia). In both cases, the straight lines in the ruled 
surfaces were used in a similar way to generate moulds. (Burry 2001) 
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However, the hanging models do not implement the ruled surface 
constraints for the envelopes, and neither does the ruled surfaces 
rule take the exact distribution of mass along the structure into 
account. It requires an expert’s interpretation to make them work 
together. Gaudi saw forms and once he had determined them 
mentally, he sought the means to transform them into physical, 
buildable objects. (Giralt-Miracle 2002) A combination of multiple 
constraint models in a digital simulation would yield a wider range 
of exploration in both overall proportion and composition in 
correspondence with the surface of the building components. 

Frei Otto 
Otto is different in that he was at the same time a researcher and 
teacher. He collaborated widely and therefore his beliefs, knowledge 
and architectural posture was not limited to his oeuvre alone but 
in fact built up a following in southern Germany and around the 
world. His buildings follow the principles of lightweight building 
over individual architectural expression. Otto also generalized the 
principles of form finding based on physical models to a large group 
of physical phenomena beyond strings and chains, this extended 
to soap bubble minimal surface and highly accurate photometry 
methods for extracting data from the physical models. But as for 
Gaudi, the models are not taken as a given but interpreted by 
knowledgeable and critical engineers and architects who add the 
architectural and engineering details making them reality in their 
material and scale context.

Heinz Isler – Physical form finding models
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Isler is probably the biggest perfectionist and most isolated of the 
three. Working delinquently on his shell structures in the basement 
of his house, taking great care in the creation, measuring and even 
monitoring of his shell structures he has an intimate bond with 
his design work which also reflects a level of respect for those 
fragile and complex engineering structures understood only by 
few in the depth of Isler. His example raises doubts whether it 
will ever be possible to work with such level material reduction in 
less regular structures when an expert like him is not available for 
such projects. But maybe some of the knowledge can be captured 
and generalized and made available in digital environments to 
calculate and evaluate novel forms with the elegance and simplicity 
of Isler’s shells, which at the same time open up the architectural 

Extended form finding experiment



278

possibilities. 
Once the measuring is completed, it is a very time consuming 
process to make any alterations to the design. But physical models 
built in the real world also ensure that the model is not the artifact 
of a selective simulation strategy that may or may not include key 
parameters necessary to model the structure accurately. Despite the 
challenges they pose in achieving accuracy and scaling of material 
and mass, physical models do ensure a more holistic simulation of 
the problem than an image based computer simulation. 

5.3.4	 Extending the Concept of Form Finding 
Using physical form finding techniques as an engineering 
technique has precedents reaching back to the Renaissance. In the 

Hanging models generated with the 
tool
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the physical hanging chain model is to not give information on 
the optimal distribution of stress in the material of the built form 
(Tomlow et al 1989).
The author proposes techniques to integrate this translation into 
the design stage of the hanging models. This thesis presents a 
digital hanging model based on a particle spring systems library 
implemented by Simon Greenwold using Euler and Runga Kutta 
solvers programmed in Java. The goal is to provide a real-time 
three-dimensional-modeling environment that allows the design 
of gravity based forms following the hanging chain principle. By 
using the same building components it is also possible to model 
any mesh topology, for instance approximations of Heinz Isler’s grid 
shells or fabric like surfaces. The initial tool was further developed 

early 20th century, Gaudi pioneered them as a design tool in three 
dimensions using hanging chain models. He produced stunning 
works of architecture that convince through structural and 
sculptural elegance. However, little is written about the process 
whereby the abstract string based chain model with point loads is 
translated into a volumetric geometry with distributed loads and 
structures with self-weight. A weak point of Gaudi’s technique of 

Comparison between digitally created 
and fabricated standing form and 
its equally dimensioned hanging 
equivalent..
Left model in compression with a 
material cross section. Right model an 
inverted string model using the same 
geometry

Progression of the particle spring 
chain falling over time.

Slight deviation from the equation 
based hanging chain are possible 
with high spring counts and very low 
stiffness.

The weights can be edited and show 
the variation of the hanging line.
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5.3.4.1	 Equation-based approach
It is possible to calculate a catenary curve between two support 
points given a string length based on a parametric equation. 
The hyperbolic cosine forms the basis for the catenary equation 
and allows the calculation of any point on a hanging string of 
uniform weight, which is supported at two points. The vertex 
corresponds to where t = 0, a parameter that determines how 
quickly the catenary “opens up.” (Weisstein 1999). The amount of 
“sagging” is related to the string length and the distance between 
the supports. The equation can be adapted to uneven support 
points as well. Paul Cella noticed that textbooks of mathematics, 
mechanics and engineering practice produced what appeared 
to be a settled conclusion: When the supports of a catenary are 

and tested in a workshop setting in order to validate results and 
provide a more solid implementation and input from students to 
the tool. The relationship between form finding model and the 
translation into volumetric form was explored in a series of small 
models.

Different features for exploration 
were tested. One was the particle 
tracker during simulated sideways 
forces. The position of each particle 
was  traced over time and gave a good 
visual sense of how the structure was 
responding
Stitching of surface patches through 
zero length  springs.
On the left an example of a nicely 
balanced mesh. All examples were 
developed as extensions to the Java 
application by the author.
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at different elevations the mathematical complexity precludes a 
theoretically correct solution and a parabolic approximation is the 
recommended approach. (Cella 1999). He subsequently derived 
the catenary equations to calculate the uneven support catenary 
problem.
What the catenary equation approach does not provide is a way 
to solve undetermined structures, for instance if four strings are 
joined in one node and no single solution exists. The subparts of 
the catenary between support points can still be solved with an 
equation, but the location of the supports in the general case can 
only found through a solver-based approach. This is where the use 
of a solver is necessary in order to determine the overall geometry 
for the equilibrium of forces in the structure.
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The topology constraint drives the 
initial setup of the model
The topology relevant information 
is represented with a particle spring 
system and implemented with 
instances of members of the system 
such as springs, particles and surface 
meshes.
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to solve for the position of a point mass with respect to time. With 
the introduction of gravity, linear spring force, and viscous drag 
it is possible to construct a particle spring system with simulated 
gravity. For the simple determined cases, analytical integration 
works. But in more complex cases, it is necessary to integrate 
numerically. Different methods have been developed, among 
them Euler, midpoint, and Runga Kutta. (Baraff and Witkin 1999)
The particle spring library uses an explicit Euler solver for mesh 
simulation, which is satisfactory for relatively low stiffness of the 
springs. During a workshop at MIT in the spring of 2004 initiated 

5.3.4.2	 Computational solvers for form-force equilibrium
A more general approach to the problem is to use particles that 
represent a point mass in space and has a position and velocity as 
well as an acceleration property. Based on Newton’s law, force acting 
on a body causes acceleration, which is inversely proportional to 
the mass of the body in the direction the force is applied. We can 
formulate a system of equations that can be integrated analytically 

Volume based on the forces present 
in each of the members. The patches 
in the background are cylindrical 
unfolded surfaces of the tube 
segments, which are being updated 
live with the moving structure.

On the left a paper mockup of an 
intersection of the structure.

Joint studies in CATIA exploring the 
intersection of different diameter 
tubes.
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by John Ochsendorf and co-taught together with the author, 
Barbara Cutler, Eric and Marty Demaine, and Simon Greenwold, a 
second implementation was written by the participants, which can 
handle meshes with very high stiffness and uses an implicit version 
of Euler and Runga Kutta to get stable solutions. Cloth strongly 
resists stretching motions while being comparatively permissive 
in allowing bending or shearing motions. This results in a “stiff” 
underlying differential equation of motion. (Press et al 1986) 
Explicit methods are ill-suited to solving stiff equations because 
they require many small steps to stably advance the simulation 
forward in time. (Baraff and Witkin 1998) Strings in the hanging 
model have similar characteristics as cloth as they have very stiff, 
meaning non-stretching segments making up the string.
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The geometry constraint of the 
hanging model. The length and 
positions of fixed particles are  
specified and influence the emergent 
overall structure. The geometry 
constraints are enforced through 
maximum spring lengths and fixed 
position constraints.
In addition a geometric volume 
is generated based on the spring 
force in each segment. The area is 
generated based on the maximum 
local  buckling length for the cross 
section under a given material.
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the evolving structure. The system is referred to either as mass 
spring system or particle system. For the remainder of the chapter 
the term “particle spring system” will be used.

5.3.4.3	 Evolving form from topological and quantitative 
constraints 

The parallel structure of the exploration in the form finding example 
includes topological constraints in form of the connectivity diagram, 
and quantitative constraints on the length of the connecting 
elements, in this case the spring elements.

5.3.4.4	 Secondary constraints
Secondary constraints are the quantitative constraints of the 
allowable forces for a given material in the generation of the 

This computational method allows the interactive construction 
of string-like constructs out of particles and spring elements that 
approximate physical hanging model behavior when subjected 
to gravity. This approach is not new but is well established in the 
computer graphics community and the animation industry. It is 
novel to use it as an interactive modeling environment for designers 
that allows not only optimization but also playful exploration of 

A series of steps in the form finding 
based fabrication of a sample roof.  
The form finding model shows the 
forces in proportion to the segment 
cross section area, based on local 
buckling length. The buckling length 
equation uses a material parameter 
to determine the maximum allowable 
force for a given cross section and 
segment length.
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force dependant cross sections of the evolving geometry. In the 
implemented example, the envelope weight is not feedback into 
the form finding cycle due to the challenge of creating circular 
dependency that might cause the solver to fail.

5.3.4.5	 Implications for design 
The availability of general purpose solver architectures could 
influence the design process in terms of the design process as 
the initial approach to a design problem could use constraint 
explorers that allow for the general formulation of the design task 
and a response from initial design gestures through the solver 
architecture. The interesting aspect is that the potential for faster 
construction and adaptation of both the design explorer and the 

The material constraint is embedded 
through a material parameter in 
the buckling length equation and 
optionally as a factor in self weight of 
the structure.
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emerging designs could be facilitated in a digital environment and 
the chosen approaches would be less dependant on the properties 
of physical space to be implemented which opens up the field to 
more abstract design constraints to be integrated,

5.3.4.6	 Iterative adjustments rather than top down design
The formulation of a design must change from the earlier presented 

examples, which rely on top-down descriptive geometric 
hierarchies and are very useful in structuring a design project and 
introducing dimensional and limited topological variation but they 
proof less helpful if constraints and design goals are co-evolving 
with the exploration construct.

5.3.5	 Between Design Intention and Optimization
The form emerges from the interplay between design intention 
and constraints. There is no optimum without constraints. The 
interpretation and weighting of the constraints is part of the 
articulation of the design intention. 
Engineering presents optimization and computational methods 
for constraint resolution often as the optimal result. Optimal might 

An interface sketch inspired by 
the parallel approach to design in 
Generative Components and in the 
“Alice” programming environment. 
It shows different design 
representations: topology,  geometry, 
fabrication views. In an ideal 
scenario the design can be driven 
from any of these representations 
interchangeably.
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mean numerically accurate within the framework of the analysis 
and optimization but the boundaries and definition are subject 
to design considerations as well. The exposure of the boundaries 
and the constraints in a dynamic interactive simulation, such as 
the hanging model, allows for the exploration of both the optimal 
solution within a given boundary, but also for the adjustment of 
those boundaries on the fly to observe the design response. 

The expression of design intention shifts away from the literal form 
giving and towards the specifications of the contextual parameters 
and starting conditions and of course the system of optimization 
itself. In the light of this argument optimization becomes more of 
an iteration, or design exploration, where both solution and starting 
condition are shifting constantly in response user adjustments and 
system feedback. It is likely that different points of equilibrium 
emerge in such a process than when the optimization is linear and 
only start goal oriented. The setup of the system resembles more 
the human system interaction described by Wiener in his book 
Cybernetics, in its feedback cycles between user interaction and 
system response (Wiener 1942).
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5.3.6	 Translation of Topology to Physical
Architects who have used hanging models struggled with the 
translation of the two-dimensional elements of the network of 
strings into the complex spatial curvature of the three-dimensional 
surfaces necessary to stay true to the model. In “Das Modell” it is 
stated, 

“Apparently as a side effect of this struggle to follow constructional 

forms based on hanging models, for the first time in architectural 

history the hyperbolic paraboloid form was tried out in a building.” 

(Tomlow et al 1989).

The hanging model provides a line model for the load paths for a 
given distribution of weight. However, it does not specify where 
the envelope lies in correspondence to the load path.
In general, the self-weight of the load-bearing member contributes 
only negligible amounts to the structure locally and therefore does 
not substantially affect the hanging curve form. If there is no load 
present other than the weight of the structure itself, the self-weight 
becomes the dominant form giving factor. The cross section has to 
provide enough area for the forces traveling through it. A further 
optimization of the structure, for example with the aim of achieving 

Changes in the design process due 
to the form finding process. The first 
step is the definition of the constraints 
of the environment. The second step 
is the specification of the topology.  
The starting geometry based on 
the topology reveals little about the 
emerging geometry. As the design 
evolves and responds an overall 
form slowly settles from the sum of 
all the constraints acting on it. Due 
to the solver function  even if a form 
reaches an equilibrium point it is still 
constantly moving.
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It is possible to interact with the design 
through each of the constraints

uniform loading in compression throughout the same material by 
varying thickness, was not undertaken by Gaudi. (Tomlow et al 
1989).
The digital hanging model does create varying thickness of the 
extrusion along the members based on the forces present in 
each member. The resolution of the simulation is also a factor in 
determining the volumetric form. In order to keep the number of 

particles in the simulation low, the number of particles a hanging 
line is usually relatively low. This leads to polyline forms with 
straight spring sections in between. If the resolution is too low, 
it significantly offsets the load path from the ideal catenary. In a 
later version, dynamic subdivision of the springs based on offset 
measurements from the ideal catenary will be implemented.
The most straightforward translation from the line skeleton into 
a volumetric entity is an extrusion of a profile along the spring 
vectors with its diameter being approximately scaled to the forces 
present in the particular section of the string. Additional factors for 
determining the cross section are local and global buckling.
The shape of the extrusion can be varied to produce different cross 
sections depending on what material is being used. The load path 

Each constraint provides an interface 
to the user to interact and edit the 
design with,
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comparison to the members themselves and create difficulties 
in applying a uniform joint system. Parametric studies have been 
done to study joint systems to take this variation into account.

5.3.7	 Roof Example 
The roof example was a short term physical mockup of a roof 
network constructed and form adjusted in the particle spring 
system. It showed satisfactory correspondence to the predicted 
form and structural responses of the digital model. Under load, 
the flexing of the support beams showed the expected force 
accumulation seen in the digital model.
An example model was produced from a digital hanging model and 

must lie completely within the geometric envelope in order to 
keep the structure in equilibrium. Furthermore, if the material cross 
section is not supposed to be subject to tension, the load path has 
to lie within the innermost third of a symmetrical cross section. 
A bigger question is how to develop the intersection between 
members of differing cross sections and spatial orientations. 
At acute angles, the intersections can become quite large in 

A truss based roof sketch.
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distribution in the form finding model. In addition, the physical 
model clearly demonstrates the structure’s vulnerability to forces 
other then gravity. When the structure is loaded laterally, it is much 
more elastic in its response than under a vertical load and does not 
act as a shell. 

5.3.7.1	 Experiment 1: Designing in dynamics vs. analytical 
approach – design by discovery

Current design software supports the creation of geometry 
through geometric operations aimed at creating solids, wire 
frames and surfaces. This geometry captures the design intention 
to a point and serves as the communication platform for many 
interdisciplinary discussions. Structural analysis is usually done 

fabricated to validate the approach. For the translation of the wire 
frame model into a surface, Rhino was used as an intermediary.
The physical model was subjected to vertical loads similar to the 
forces in the form finding simulation and the response of the 
supports was observed. The deflection due to the accumulated 
loads of the shell clearly shows at the two middle supports of 
the roof in the physical model, which corresponds to the force 

Digital model of the roof.
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geometry linked structure, a designer can directly observe the 
range of structural responses while exploring possible forms. 
This encourages an explorative approach to design and supports 
unconventional solutions that integrate and respond to the 
designer’s intent. 
Structural and dimensional evaluation of form is not an afterthought 
but an essential part of the design process. Innovative structural 
solutions for shapes that are not limited to post and beam 
convention require innovative translation of the design intent. 
Structural behavior of complex form is hard to predict. Therefore, 
the ability for early structural feedback is important. Discovery 
of design in interaction with the tool rather than optimization of 
early design sketches. Iterative back and forth between design 

using this geometry, or with specifically created geometry based 
on it. This analytical step requires a relatively large investment of 
time and does not easily allow the designer to go back and change 
things. In addition, the results of the analysis do not immediately 
provide a remedy for correcting potential problems. 
This is where the learning by discovery that is enabled by 
interactive tools comes into play. In interaction with a live, force-

Wireframe cathedral sketches show 
how complex spatial arrangements 
develop quickly from simple 
topologies.
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moves and a structural response allow for integration of the 
structural properties. Varying degrees of optimization – The design 
goal cannot possibly be driven by optimal structural shapes only 
– designer has a choice to go less efficient.

5.3.7.2	 Optimization as a part of design
The notion of optimization as a design support tool is questionable 

if it remains unchecked. Initial design moves often are exploratory 
in nature and may or may not have an impact on the eventual 
outcome. To optimize an intermediary design move may cause 
paths to be abandoned or curtailed prematurely. It maybe more 
appropriate to speak of discovery rather then optimization. Design 
discovery could be defined as opening up potential design paths 
to the designer in the light of environmental influences acting 
on the design such as for instance gravity. The effect of such 
external parameters on the design may be mediated or weighted 
accordingly.
Optimization should not be the sole driver in design, as choosing 
an optimization objective is already part of the design choice. To 
choose a goal is to set a design process. Although it might seem like 

Mesh test to see whether Isler’s edge 
condition is reproducible in the digital 
model.
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structural performance and material usage are out of the question 
for design considerations, some of the most radical differences in 
design approach constitute themselves in the differing positions 
on structural rational and material efficiency. What often is missing 
in design optimization is the variation of the starting premise. 
Kristina Shea’s Eifform is one of the few examples where the 
optimization is coupled to a generative technique, allowing the 

recreation of the structure topology based on the performance 
analysis. (Shea and Cagan 1997) Currently the form finding tool 
in development based on the workshop does some dynamic 
editing of the mesh topology based on tension and compression 
distribution in the structure. If a strut goes into compression it is 
eliminated. Over the course of the simulation only struts in tension 
remain. More research into the dynamic topology response is 
needed along the lines of Kristina Shea’s research in order to make 
optimization a true component of design exploration and to allow 
for direct intervention by the designer.
As soon as the springs form a network that is more than a linear 
linked chain of springs and particles the structural behavior 
becomes more complex. No longer is there one unique load path. 

Variations on topology shown to the 
left. Change in the topology is the 
next step in form finding. Kristina 
Shea’s EifForm application is a great 
example of integrating several factors 
related to form and topology into a 
design explorer.
A change in the topology can have 
significant impact onto load paths in 
a structure. For instance, Nervi’s roof 
structures closely follow the lines of 
force in his structures.
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Multiple paths between support and loads are possible and no 
single determined solution exists. Also, the behavior approximates 
that of a shell with increasing mesh density. An additional artifact 
of the simulation approach becomes apparent, as the spring 
approach does not ensure tension, only members. If the distance 
between two particles falls below the rest length of the spring 
the spring generates compression forces. Detecting the state of 

the spring at any point and alerting the viewer of its compression 
state or alternatively removing it from the solution can avoid this 
problem.
In determining the thickness of shells that are approximated by 
grid meshes one can refer to Heinz Isler’s work. Isler identifies 
instabilities in his shells as follows: First, at the supports second, 
due to general buckling; third, due to local buckling of the free 
edge (for which the counter curvature is so important); and finally, 
due to other modes. (Chilton 2000) 
The author explored a less rigorous visual approach to testing the 
stability of a simulated form. By adding additional forces besides the 
vertical force of gravity, the structures can be triggered to sway. The 
relative amount of swaying of each particle is traced for the previous 

Variations on load paths for the same 
hanging model surface. The patterns 
are modeled manually as quick sketch 
iteration of possible patterns.
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200 positions. This allows a visual comparison of the displacement 
of the structure in different areas. Stable structures will show little, 
uniform displacements. Instability becomes apparent when traces 
vary widely. This approach could be developed further to integrate 
proper wind load and earthquake displacements. For now it is a 
simple, interactive way to explore a form for structural redundancy 
beyond one optimal load case.

5.3.7.3	 Experiment 2: Load path
The load paths in a structure are very much dependent on 
the topology of the mesh and the geometry of the individual 
members. Often a topology change to avoid a singular dominant 
load path does much more to make a form more efficient then 
the geometric optimization of the starting topology. For instance, 
Isler was surprised to find that 90% of the loads in his shells are 
traveling into the supports in the corners of his shells. The edge 
supports receive only a fraction of the weight. This is due to the 
varied stiffness of the shell areas and subsequent variant resistance 
to loading. Therefore optimizing compression-only structures 
does not guarantee evenly distributed loads. In order to achieve 
uniformly distributed loads in a structure the thickness has to be 
adapted in accordance to the loads present after the initial form 
finding.

5.3.8	 Topology Finding – The Next Step 
In the particle spring system and real structural systems, the 
performance and dimension of a structure is integrally connected 
with its topology. Therefore, the system cannot stop at optimizing 
geometry but has to address the optimization of topology as well. 
Kristina Shea’s Eifform’s program is an example of such a process 
where both topology and geometry are subject to rule guided 
optimization with a semi-spherical target shape. 
But finding topologies has to go beyond the variations of 
connectivity in fixed target geometry as it ultimately expresses the 
design goal as well. It leads to much larger issues of goals for design 
intent rather than structural performance alone. Performance can 
only be measured within a given framework, usually specified by 
the design guideline but novel topology might in fact challenge 
the starting conditions.
The mesh topology has a substantial effect on the form of the 
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structure and on the distribution of forces within it. The mesh 
topology fundamentally influences the performance of the 
structure. To optimize a structure cannot only mean to find the 
most efficient form for a given topology, but to find the most 
optimal topology for a given load case. This introduces the notion 
of topology finding or structure generation in addition to form 
finding.

5.3.9	 Teaching – Hanging Model Workshops
The work on the hanging models was followed up with two 
workshop initiated by John Ochsendorf and co-taught together 
with the author, Barbara Cutler, Eric Demaine, Marty Demaine, 
Simon Greenwold.

The hanging model application 
that resulted from the workshop. 
The workshop was initiated by John 
Ochsendorf and co-taught by Barbara 
Cutler, Axel Kilian, Eric Demaine, Marty 
Demaine and Simon Greenwold. 

The development of the application 
shown to the left was headed by 
Ryo Shimizu, a participant in the 
workshop. The application is written 
in C++.

The model shown here, by Barbara 
Cutler, is at first the current shape of 
the Kresge dome geometry as a mesh. 
The sphere patch is not  an optimal 
structural form though and when 
subjected to the form finding process 
turns into the shape shown below.

The red members are members in 
compression.

Image: Ryo Shimizu and Barbara 
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The shown implementation of particle spring system is based on a 
particle spring library developed for the Processing (Fry and Reas 
2005) environment by Simon Greenwold.
In the spring semester of 2004, instructors and students from 
civil engineering, architecture, computer science and computer 
graphics conducted a workshop to investigate the problem from 
an interdisciplinary perspective.
A robust and scalable implicit solver was implemented in C++ 
by the students. It allows the handling of larger particle spring 
meshes and faster processing times. The application was tested in 
its initial stages and will be applied in a design context in the near 
future. For validation purposes a spherical roof shell structure was 
modeled and evaluated in the software.

5.3.10	Conclusion
The goal of the experiment was to show how design focus could 
shift from the geometric objects to systems that produce and 
vary design beyond geometry. Some of the most intriguing 
design emerged from the intersection of strong constraints, often 
constraints that are contradicting. Those design conditions can 
not easily be dealt with by developing isolated design solution 
for each constraint individually; in fact a solution to an isolated 
constraint might be completely useless in the presence of another 
constraint. 
Surprising results can emerge at the intersection of the conditions 
that need to be satisfied and the more complex the interactions 
become and the design object the less likely it can be dealt with 
fluently. A digital parallel constraint representation as in the 
hanging chain example offers the fluidity without reduction or 
abstraction of the elements involved. Such fluidity is not easily 
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obtained as many constraints don’t have direct mappings but at 
least provide an example of what could be accomplished in the 
ideal case.
The experiment lays out the potential for the integration of form 
finding techniques with fabrication strategies in a digital, integrated, 
expandable environment. 
Form finding techniques in an interactive digital modeling 
environment can support the design process by giving continuous 
feedback to the designer, allowing the designer to integrate 
structural principles into the creation of form rather than to 
structurally optimize the finished form at the end of the design 
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process. Digital simulation makes a range of numerical outputs 
of the form available for the generation of additional geometric 
information (like a building envelope) in response to the forces 
present. However, the approach to design should not a priori be 
driven by form finding or structural optimization. The design tools 
should always allow the designer to intervene and define design 
optimization principles.
It is certainly not the goal of the approach outlined here to promote 
a certain style or to create a “Gaudi design machine”. The goal is 
to understand that expressing design goals as computational 
principles can support interactive design exploration and 
enhance the design experience. If the tools can provide a higher 
level of sophistication in doing so and enable handling complex 
competing design constraints in an interactive way, they will 
stimulate and challenge the notion of the design process in 
modeling environments today.

6	 Results
In the following sections, the author summarizes the key result of 
the experiments conducted in the framework of this thesis: How to 
use constraints as design drivers in design exploration. He points 
to the areas where this approach could have the most effect, 
speculating on the challenges for future developments in the 
underlying conceptual framework of digital design environments, 
the structure of computational design environments themselves, 
professional practice and fabrication. The author strongly believes 
that it is time to move beyond the mere geometry-based design 
representations of today. 

6.1	 Constraints as Design Drivers
Constraints are usually perceived as limitations in design 
exploration. With computational models and the ability to model 
even complex dependencies their role maybe changing towards 
that of design drivers. The thesis showed several experiments that 
started from a very limiting premise and in some cases developed 
unique aesthetic or functional designs.  The main reason constraints 
can become obstructions in design exploration is when the wrong 
choices for abstractions are being made. An abstraction that focuses 
on the suitable representation of constraints that allow the creation 
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of constraint networks will be more successful than an abstraction 
that focuses on the reduction to the limitation.  One simple 
example could be a height constraint. A fixation onto an absolute 
value will allow little exploration, whereas relating the height to a 
related entity responsible for the constraint will create constraint 
relationship that allows for more meaningful explorations. This is 
when constraint relationships can become formulations of design 
intent and eventually become design drivers. The constraint type 
can vary and go beyond the quantifiable, but the principle stays 
the same. The illustration of this translation is a key contribution of 
the thesis.

6.2	 Types of explorations
The key contribution of this dissertation is the articulation of a 
novel approach to design exploration. Through the externalization 
of exploration processes, constraints have the potential to become 
design drivers that can be exercised through design explorers. 
Design explorers are the computational and conceptual constructs 
that capture the dependencies in a design problem externally. 
Design explorers are constructed design specific. The first step 
is to diagram the constraints that play into defining the design 
problem. Through diagramming cross-dependencies and the 
type of exploration can be identified and constraint solvers can be 
developed, if necessary. The type of exploration for the definition 
of a design problem varies depending on the constraints. 
Redescription of a design solution using different forms of 
representation aids in the generation of novel design, as each 
translation forces a reduction of the design on the shared 
constraints and produces a set of robust and overarching function 
and conceptual description that aid in design exploration. Through 
the experiments the thesis identifies three exploration types. 
They differ in their relation to the emergent design space of the 
exploration. 

6.2.1	 Branching exploration and design space
The first type is establishing a design space through a branching 
exploration. Through the addition of constraints a design space 
is progressively created starting from an initially undefined 
problem. The opening up of design space creates possible design 
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variations.

6.2.2	 Circular exploration and design space
The second type is a circular exploration. It either follows the 
branching exploration or the exploration begins from a well 
defined design problem from known constraints. The term circular 
refers to an exploration with a set of weighted constraints revolving 
around an established design space. It also refers to potential loops 
between constraints which propagate changes in one design 
representation to all others. This tendency to propagate and to 
create feedback loops makes this circular type of exploration 
particularly difficult to implement and fine tune.

6.2.3	 Parallel exploration and design space
The third type is the parallel exploration, which has a set of known 
constraints and well defined relations between them but an open-
ended design space. The variations in the design emerge from how 
the constraints are weighted against each other.

6.3	 The three exploration types in relation to 
the constraints

6.3.1	 Defining the constraints
If a problem is not well understood, then constraints need to 
be analyzed. Functional constraints allow for a component 
independent design exploration that, through the regrouping of 
different functions into new functional groups, can create novel 
design implementations. An example for this process is given in 
the writing device study as well as in the car studio for the creation 
of a seat-bucket-door combination.

6.3.2	 Refining the constraints
For design problems that are well understood in terms of their 
constraints, a different type of exploration emerges. This exploration 
focuses on establishing the role of design driver among competing 
constraints. The product of the integration of constraints, 
implementation, and representation choices into an overall frame 
work is referred to in the thesis as the design explorer. The design 
explorer is an emergent entity of the exploration as much as it is 
the vehicle of the design exploration itself. The thesis experiment of 
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the chair came about at the intersection of curvature, proportions, 
material, fabrication, and dependant assembly and connection 
constraints. The translation of abstract constraints into design 
representations and their implementations is a fundamental step 
in articulating the exploration. It eventually allows for a smoother 
form of design exploration through exercising the explorer.
In the chair example, the implementation choices play as important 
a role in the creation of the design as do the abstract drivers. It 
is important to note the aesthetic influence of the fabrication 
technique from the beginning of the process on both the overall 
design and the details. This is illustrated in detail in the experiment 
section in the design explorer diagrams.

6.3.3	 Exercising the constraints
The third type of exploration occurs in the case of a set of well 
understood constraints where a computational representation 
exists or can be developed. The resultant design explorer can be 
interacted with as an entity embodied in the computational model 
that is more than the sum of its parts. The hanging model is the 
example given for this exercising of the design constraints in a 
seesaw like fashion between parallel constraints is the particle spring 
hanging model.  The primary goal of the parallel exploration is the 
discovery of novel designs from exercising several constraints in 
parallel. If the cross dependencies are as complex as in the hanging 
model, abstraction of the design problem to make it graspable 
for a human designer is not an option. The digital explorer offers 
the possibility of a seesaw like shifting of the design driver from 
constraint to constraint in guiding the exploration. In the hanging 
models this means editing the topology, the geometry or the 
material properties respectively.

6.3.4	 Discovery versus optimization
The implementation of a design explorer as an interactive entity 
opens the possibility of design as discovery from the exploration 
of the design form within the design space defined by the explorer. 
Innovative solutions may defy conventions. Optimization as 
design strategy poses the danger of measuring improvements in 
design against a conventional notion of the solution space. In fact 
the evaluation criteria of an optimization are as much part of the 
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design as the solutions that are being evaluated. Optimization 
assumes a set of stable evaluation criteria, design exploration as 
defined in this thesis explores both variations within the solutions 
to a problem description and variations of the problem description 
itself.
Most search and optimization processes have this shortcoming 
built into them such as genetic algorithms. An exception is the 
EifForm application by Kristina Shea (Shea 2000), which combines 
generative changes to the design with analytical evaluation of 
the designs. The optimization of the dome topology takes place 
under a set of force constraints, and in the following iterations 
alternative topologies are generated from rule based systems to 
compete against the initial optimum. This was accomplished out of 
the combination of several established engineering methods and 
could serves as a role model for future modular design explorers 
whose strength is derived from intelligent recombination of models 
from different domains into a design specific design explorer that 
achieves much more than any of the modules taken on its own.

6.3.5	 Design is in the details
Variations of designs are infinite even for a well defined design 
problem but not any solution that satisfies the constraints is a good 
solution. As any designer will know the design is in the details as 
much as in the overall approach. Complexity and scale often 
freezes that design process at a stage when not all design relevant 
constraints have been integrated into the exploration. The exercise 
of fine tuning a design in the presence of all possible constraints 
is the art of innovation for a well understood problem. Innovation 
then is in the details and the formulation of a design explorer very 
helpful in externalizing and tracking the state of the overall design. 
The chair example proofed this hypothesis through the amount 
of development and integration and balancing of constraints was 
necessary to realize an only partially successful prototype from a 
straight forward geometric sketch.

6.3.6	 Embodied constraints versus descriptive 
design

Choice is crucial in design exploration. It is all too easy to confuse 
the investment in effort and time into a design variation with its 
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value. The two efforts are not related and generative explorations 
help to shift the focus on design on the conceptual and systematic 
level while increasing choice. In addition the choices are embodying 
the constraints. In the ideal case of a bidirectional exploration 
the products of the exploration can become the starting point of 
redefining the exploration itself.
The design explorers are domain specific and design specific and 
the types identified are prototypes that stand for a much larger 
variety of explorations. The term design explorer has been used 
before in the context of design exploration, for instance in (Gross 
1984), but Gross referred to them as defining the relationship of 
components in the exploration of a design problem.
The definition of design explorer as a design specific construct 
made from the building blocks of design representations, design 
constraints and their respective implementations is a novel concept. 
It is novel because it takes into account an emergent trend of hybrid 
design descriptions in the context of design. The design processes 
are hybrid in their parallel existences of conceptual, implementation 
related, physical, and digital representations, all factoring into the 
design exploration. This poses a unique challenge for the creation of 
design explorers as exercisable constructs the designer can interact 
with. The author also suggests that conventional design software 
is not particularly well suited to play the integration platform for 
such a design exploration. The majority of CAD programs focus on 
geometry centered design representation with a minimal amount 
of higher level design description dividing the actual design 
representation in form of geometry. Parametric design systems at 
least offer a certain level of geometric and topologic variability but 
the overall rigidity of the design description prevents them from 
being good design explorers. The design explorers are as varied as 
the design problems that and they have to be redefined in parts 
every time a new problem is created. That does not rule out the 
use of existing or future conceptual building blocks that capture 
recurring conceptual and functional findings. Such building blocks, 
most notably the concept of simulation, which is at the core of 
virtually all digitally based endeavors, are introduced in the thesis 
in the initial introductory experiments.

6.4	 Conceptual Building Blocks – 
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Simulation, Surface, System, Search
The dissertation has identified, analyzed and built upon four 
conceptual building blocks central to the formulation of design 
explorers. This provides the background for the discussion of 
further developments in computation and design representation.
Digital computation is shaped by the emergence of simulation, 
surface representation, systems and search. The history of the 
medium is ingrained in its conventions, knowing that history helps 
to work with and around those conventions and to expand the 
vocabulary of the medium.
In conclusion a summary of the four main concepts discussed in 
the introduction is given to point out possible directions to further 
develop them in the context of design exploration.
The first concept is simulation, at the heart of any design exploration. 
It is the abstract foundation of creating a representation that can 
be used to make predictions without embodying the entirety of 
what it represents. In computation, the concept of simulation 
has played a key role in pushing the conceptual and hardware 
development of what we view today as computers. The idea of 
simulation made it possible to exercise mathematical models 
for the sake of getting reliable predictions about much larger 
phenomena outside the limited scope of the machine. In terms 
of the development of visualization, the numerical world of early 
simulations quickly latched itself onto the feeble visualization 
capabilities of the emergent screen displays. Once the memory 
barrier had been broken, the pressure exercised by the directness 
of the visualization of a data set helped to fuel the development of 
visual systems. 
Geometry was the first choice for visualizing numerical data. It 
was, quite frankly, the only choice available, since other output 
methods did not yet exist. Even the development of the screen 
was a long process and its outcome not at all obvious. But once the 
track for line-based geometry was chosen, it quickly prospered. 
With increasing machine speed and decreasing cost of memory, 
three dimensional geometries became possible. Surfaces were 
soon to succeed the wireframe geometries of the first decades. 
And another key building block in design representation of today 
had been introduced. 
The dominance of surfaces in design representation can be directly 
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traced back to the role of simulation. Simulation relies on images 
and surfaces. They provide, similar to points and lines, efficient way 
of visualizing three dimensional data. Accordingly, computational 
geometry for surfaces was developed in part to satisfy the 
increasing need for computational ways to describe complex 
objects like cars and planes (Bezier 1966). In fact, the automobile 
and airplane industries became the earliest clients of the nascent 
computer industry.
Surfaces still represent a major challenge for design representation 
today, and the latest increases in computational speed have 
increased their influence even further. Even the development of solid 
modeling could not break that dominance, as solid modeling still 
relies on watertight surface assemblies. Surfaces dominate digital 
design representation. This was less of a problem in the visually 
oriented output environment of computer graphics. But in the last 
decade, with the increasing availability of computer numerically 
controlled machines (CNC), the new challenges of translating 
surfaces in design representation linked to implementation in 
physical space have become apparent.
This leads to the third conceptual building block of design 
exploration: the concept of systems. In the history of digital 
computing and the history of systems, the complexity of 
computational problems and the changing computing tasks for the 
machines confronted the computer engineers of the 1940’s with 
persistent problems in reconfiguring their hardware. In retrospect, 
the concept of stored program machines evolved surprisingly late 
after years of hard wiring machines. With the availability of program 
storage, however, the time was ripe for the creation of systems 
that were specific to a task, but could be quickly changed and 
adapted to a novel task. The engineers developed programming 
languages that captured low level concepts in reusable form. Today, 
software and programming languages are key building blocks of 
any implemented computational construct. But they have their 
limitations. The increasing inertia of any large, complex system 
makes it harder to accommodate fundamental change.
With the increased computational power and the vast increases 
in storing and sorting capability of data, the amount of accessible 
data multiplied exponentially and the fourth building block, the 
concept of search, became essential to deal with data. Anyone 
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using computers today is familiar with the use of search engines 
like Google, an activity which has become an essential part of 
interacting with data. The concept of search as opposed to the use 
of previously defined data structures points to conceptual shift. As 
the needed data is unpredictable, it makes little sense to structure 
a data set a priori into organizational entities. Instead, categories 
are created by the process of searching, a concept that is related to 
emergent design features in design exploration.
Search, for instance in the form of genetic algorithms, is a powerful 
concept for design exploration. Tree data structures rely heavily 
on search for sorting and accessing information. In contrast, 
generative, rule based systems do not need search procedures, as 
any result of applying a rule is a valid member of the exploration 
set. However, the concept of search still applies to choosing and 
generating new rules.
In summary, the core concepts of design exploration identified in 
the thesis are simulation, surface, system and search. The author 
demonstrated their interdependency through their historic 
and conceptual development in computation. This provided a 
foundation for tracing their influence in the thesis experiments 
dealing with surface and material constraints, systems and the 
concept of search.
The discussion on these concepts also provides the background for 
discussing the implications of the experiments for the development 
and teaching of computational constructs. Is there a future for CAD 
software the way we know it now, Autocad, Microstation, ArchiCad, 
surface focused applications such as Rhino and Maya, or parametric 
systems such as CATIA and Generative Components? Beyond 
software what is the role of programming in the education of an 
architect, or more broadly speaking, the education of a designer? 
Has the increasing influence of the digital medium had an impact 
on how the design process is taught and conducted?
From the design experiments conducted in the framework of 
this dissertation, the author concludes that the clear distinction 
between computation as a conceptual approach and computation 
as an implementation cannot be upheld in the context of design 
exploration. Furthermore, the author predicts a shift away from 
geometry as the central design representation towards more varied 
design representation. Design explorers that incorporate design 
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specific constraints and generative descriptions that go beyond 
the pure geometric representation of today will play a key role. 
Design explorers as agglomerations of design representations will 
become more hybrid incorporating performance digital models 
and physical explorations, functional and performative aspects. 

6.5	 Fabrication and Translation between 
Representations

Current fabrication machines have very little interpretive capabilities 
built in for pre-processing and translating the data that is given to 
them. If one compares the role of a crafts person in interpreting 
and reading the instructions produced by an architect with that 
of a CAD software instructing a CNC machine the crafts person 
might be less precise but augments and translates the abstract 
information in many ways into choices of tools and fabrication 
processes that are far more complex than any machine code. 
There is the advantage of the direct and precise translation of the 
geometry for the geometric specification into G-code for driving 
the cutter of a flat bed laser cutter. However there is no evaluation 
of the geometric data for validity of the cuts to be executed. Nor 
is there any representation for the functional dependencies of 
the geometry to be cut in case material or other parameters are 
changed. Responses are constrained to the machine inherent 
parameters as for instance the cutting speed and power of the laser 
but conceptual changes or even design changes the crafts person 
would be capable of applying his or her expertise are not part of 
the translation process. Ironically the initial role of CAD systems was 
the generation of G-code for CNC milling and not the generation of 
geometry. Geometry information was converted into digital form 
from blue prints initially (Farin 2002, Farin 2001).
The three dimensional printing company Z CORP© has developed 
more sophisticated support software for their powder based 
printers that actually checks the submitted geometry for water 
tightness and invalid surface objects. It can also repair certain 
flaws in the geometry and do printing specific adjustments to the 
geometry.
A step further would be machines that take any geometry and 
translate it into printable volumetric geometry, for instance starting 
from surface geometry. There could be attributes attached to 



310

geometry similar to line weights and line colors defining preferred 
volumetric properties in the conversion. But other then that the 
translation into volumetric data would be fully dependant on 
the chosen scale, material and mode of printing. Such translation 
programs exist in parts but a general translation approach that is 
expertise based poses similar challenges as expert design systems 
do for architectural problems and there has been very little progress 
in resolving the artificial intelligence questions connected to this 
problem.
An example of such a fabrication specific translation of a design 
surface is given with the three-dimensional-puzzle surface and 
the three-dimensional-space truss. Both were generated from a 
NURBS design surface. The surface is the base input to two different 
generative scripts, which in one case produce flattened geometry 
strips with a puzzle connection detail for rebuilding the curved 
surface back up in three-dimensional space and in the other case 
produce a space truss. The truss is a structural, material saving 
way of translating a geometric surface with no thickness into a 
volumetric object.

6.6	 Computational design environments
Computational design environments need to respond to this 
demand for integrating multiple representations by providing 
more transparency both in the underlying concepts and in the 
implementation strategies. With the current state of programming 
languages, it is hard to conceive of every designer as being trained 
as a programmer. However, there are developments, such as the 
processing environment (Fry and Reas 2000), where designers 
develop design specific abstraction layers for other designers that 
allow entering the realm of programming for design at different 
levels of complexity. Recurring models of computation are captured 
and provided as starting points, focusing on the removal of 
mechanical obstacles while keeping them conceptually flexible. 
Other larger software development efforts, such as Generative 
Components by Robert Aish at Bentley Systems (Aish 2001), 
combine several approaches to digital design in a parallel 
structure. Visual and manual modeling interfaces are combined 
with script based associative topology representations. Script 
based design generation is created by the system from the design 
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history. And last a user has the ability to expand the computational 
universe of the software from each of the interaction levels by 
adding components to the compiled runtime environment. Both 
provide an educational segway from visual graphical interactions 
to computational concepts by discovery. They also allow for the 
flexibility to interact with the evolving system at the appropriate 
level of abstraction. Generative Components is far from perfect as 
a design tool in terms of interface and computational languages. 
A key quality is that conceptually the environment is created so 
the program is evolving with the contribution of users. This is the 
first step in handing over control of the software environment 
and its features to the users rather than control it from the 
software provider’s side. This step is essential in moving software 
development towards design specific development and is a radical 
departure from conventional software development cycles if it is 
followed through to its full extent.
While computational environments must continue to develop 
towards more transparency and accessibility for designers, the 
visual based representation of design will remain the most powerful 
approach of conceptualizing and generating design. Computational 
systems will have to develop to provide adequate support in 
this area. In parallel, however, the author predicts the departure 
from descriptive approaches in favor of generative approaches in 
design. Design geometry then is just an interim instance in a larger 
set of design representations governed by constraint networks and 
design drivers of various kinds.
In order to expand the type of possible design drivers in 
computational environments the performative disciplines linked 
to design, such as building technology and structural design, 
must push the development of approximate bidirectional design 
exploration methods to support design exploration. These will 
allow for the robust interaction with design variations based 
on quantifiable feedback. Current computational engineering 
solutions are overwhelmingly analytical in nature. In contrast to 
the proposed bidirectional design exploration methods, these 
analytical constructs calculate results based on provided design 
geometry. They lack the computational apparatus for allowing 
seesaw-like back and forth between analysis result and design 
geometry, where the role of driver and driven changes at will. Some 
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progress has been made in research projects initiated by John 
Ochsendorf from MIT (Block 2005) (Kilian and Ochsendorf 2004), 
based on particle spring systems (Baraff and Witkin 1998).
In the domain of lighting analysis Julie Dorsey has developed 
several computational projects for such “inversed processes” for 
opera stage lighting and other settings. The problem of lighting 
design is complex and in many cases not computable for the lack 
of any one solution or too large a set of possible solutions. This 
is another instance where constraints as design drivers could play 
an important role. They could provide the crystallization points for 
dividing computational solutions up in sets around the constraints. 
For instance, the introduction of a ceiling for the calculation of 
a light source for a given light spot does not solve the problem. 
However it provides a constraint that divides the possible solution 
space in several subparts providing the designer with choices in 
the exploration of possible solutions.
One might start with a design goal and work out the design 
necessary to achieve this goal.  Let us assume this goal is a patch 
of light in a particular location of a room. If there are no constraints 
present there are infinite possible constellations of light sources 
that may create such a light spot. An analytical approach would 
not yield a single answer as there are too many unknowns in the 
relationship between desired outcome and starting condition. 
This is though an ideal situation for a solver based approach as 
we already saw in the hanging model or the rigid body vehicle 
simulations. Solvers are designed to incremental move towards a 
possible solution closest from the starting condition. 
Few such design challenges are free of context. Any additional 
constraints, such as the presence of a roof surface, provide 
additional input to the reversal of the goal-driver relationship. In 
addition, the problem can be structured qualitatively which does 
not reduce the number of solutions but gives them additional 
properties – for instance one could distinguish between parallel 
light sources and point light sources. For parallel light sources the 
patch outline determines the distortion of a light source or opening 
that masks the light source or constellation of occluding objects. 
So even without solving for a particular result one can introduce 
constraints that trigger design consequences and ultimately 
design decisions such as do we think of this light source as a point 
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light or a parallel light. Is it a single source or are they constellation 
of different lights? How is the outline of the patch created? Form 
the masking of a bigger light source? Or through the composition 
of several objects or maybe the light is caused by an opening in 
an object? Essentially this process is similar to the function chain 
creation – a phenomenon is analyzed based on possible conditions 
responsible for its existence. The constraint constructs increasingly 
limit the possible sources for the light patch and add a qualitative 
nature to the problem that triggers a design response. At the core 
of this process is once the re description of a phenomena through 
many translations all centered at the same design driver – light in a 
particular spot on the floor.
Thereby what initially seemed to be an under-constrained problem 
without a single solution can in this way be turned into a solution 
space structured by design driver. This process suggests the 
revisiting of analytical processes in architectural design and other 
design disciplines. While analysis .is reactive, design explorers using 
bidirectional processes can be generative.

6.7	 Design Process and Expertise
Instances of design explorers can be identified everywhere in 
practice. Frank Gehry’s use of crumpled paper in sketching building 
designs can certainly be described as a design explorer. The paper 
is a physical embodiment of a constraint solver. The paper sheet has 
a set of responses and properties in response to applied forces. It is 
collaborative as it has a shared physical presence and the process 
can be repeated in a similar fashion easily. The paper properties 
act as a reference point in the office for the design language and 
its translation into building designs over the course of a project. 
This does not mean that Frank Gehry views his use of paper in that 
way. But the model could be used to support the argument for how 
powerful externalized design representation and constraints are 
even in the context of a seemingly irrational design behavior. 
The results from the experiments suggest a rethinking of the way 
digital design tools and design processes are structured. The decade 
old focus on geometry at the center of the design representation 
in the digital design realm might not be adequate for today’s 
digital processes and design process in general. The results of the 
experiments show that the cross dependencies that exist, even in 
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a relative simple design project such as the chair, turn out to be of 
considerable complexity if externalized. 
In the chair design experiment, geometry functions as the lowest 
common denominator for design processes in a collage of 
heterogeneous design representations. There are no predictable 
shared forms of representations that could be assumed by default. 
An exploration in the early phase of a design will be less predictable 
in its use of representation. The constraints and representations 
need to first be defined in parts through the exploration itself.
The formation of a design process can be compared with 
establishing expertise in a process. With the integration of more 
and more constraints into the design process or the exploration, 
the level of complexity increases and the exploration is better 
understood. 
Another issue that has surfaced through the thesis experiments is 
the sequence of the design exploration process. The exploration 
diagrams were created after the experiments were completed, as 
introspection into what happened in the experiment. A detailed 
and resolved dependency diagram requires time to be created as 
well as insight into the process that may only develop during the 
exploration. Unfortunately, the diagramming process is unlikely 
to keep up with the associative brainstorming of designers. But 
the core idea of the exploration diagram is not subject to that 
limitation. The identification of a design driver played a key role in 
all the experiments even before the full exploration became clear. 

6.8	 Beyond Geometry - Conclusion
Judging the results of the experiments it is necessary that 
architecture overcomes the current focus on geometric, descriptive 
representation of design and moves into an area where the 
multiple factors influencing and constraining design influence and 
generate geometry.
Overall, the thesis calls for a rethinking of the way digital design 
is approached in the architectural design field and in design in 
general. The geometric model at the center of design representation 
may be slowly fading and should be augmented by generative 
descriptions of the design processes. Real world design projects 
with their highly complex interdependencies and heterogeneous 
discipline structure centered on the building task require a far more 
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