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ABSTRACT   
 We report our progress in designing a modeling software tool we have called MoSS: 
Morphogenetic Surface Structure. Moss is based on Lindenmayer systems in three dimensions which 
“grow” surfaces by applying re-write rules to an axiom with an accompanying interpretation of 
movement and drawing in space. It is written in C++ as a plug-in to Alias|Wavefront Studio.  The 
tool, still rudimentary, allows an environment to be defined to influence surface growth by means of 
boundaries and objects that attract or repel direction of growth.  It optionally applies different joining 
filters to surfaces that become disjoint as a result of encountering environmental factors.   
 
1.0 INTRODUCTION 
 Modern CAD tools such as AutoCAD or Alias|Wavefront Studio allow architects to hand-draw 
three dimensional surfaces and volumes.  However, this capability falls short of software that actively 
enables designs with deliberate precision or that demonstrates adaptiveness to site conditions. We 
have also noted that architects frequently take inspiration from natural forms and the process of 
organic growth.  As a response to these initial issues, we have designed a tool called MoSS: 
Morphogenetic Surface Structure. The initial goal of the MoSS tool project is to provide architects 
with a model of surface growth in three dimensions that can be simply, yet precisely, defined and 
understood. In addition, our goal is that as growth is influenced by tunable factors an architect can use 
MoSS to model surface geometry within a three dimensional shaping environment. With a 
rudimentary version of such a tool in place, we have two further intentions that we can report have 
been fulfilled. First, we have encouraged architecture students to use MoSS so we can learn how its 
users engage it and what they find useful or limiting. We report on this activity in this paper. Second, 
we have always foreseen the need for MoSS to fit into a larger design process; one that includes the 
construction of physical models and structural elements using computer aided manufacturing 
processes (CAD/CAM). In this report we will present examples of such steps in the process. The 
culminations are descriptions and images of physical surface constructions that were first generated 
using MoSS, unfolded using CAD/CAM software into two dimensional format for laser cutting, and 
assembled to form three dimensional counterpart physical models.  
 
The paper proceeds as follows: Immediately, in Section 2.0, we will briefly discuss work related to 
MoSS. In Section 3.0 we will describe the computational basis of MoSS. That is, we will explain how 
Lindenmayer systems (L-systems) work and how we used the principles of L-systems to implement a 
surface modeler inside a CAD tool. We then describe features of MoSS that are particular to its 
context of use. In Section 4.0 we present a number of examples of MoSS. Each example can be 
simply defined in terms of its grammar and axiom plus the state of the environment in terms of 
boundary, attractors or repellors.  However, a complex design results from re-writing the axiom and 
interpreting it as drawing instructions. The MoSS derived design will be shown as a computer 
generated image. For some examples, we will also show the physical model resulting from the MoSS 
design. Our current appraisal of the project will comprise Section 5.0. We include observations about 
MoSS in its current prototypical state and our plans on how to extend it in the future.  



2.0 RELATED WORK 
 A significant motivation with MoSS is to model the development of pattern, form, and surface 
structures in the domain of architecture.  In this context a number of computational approaches to 
modeling morphogenesis are compelling to study.  One approach is cellular automata (CA) models 1. 
CAs can be uni-dimensional 2, two dimensional or even higher dimensional. A CA is a spatial system 
consisting of units (cells) that have state. As time in the model steps forward, one or more cells 
update their states based on the states of neighboring cells and, optionally, random probability.  From 
typically simple and local rules of interaction, the global state of the entire cell array emerges. 
Analysis of the local rules typically does not yield a description of the global state. When CAs are 
visualized states are represented by colors. This highlights patterns representing emergent 
interactions.  CAs have been defined that are accurate models of actual physical systems which grow 
into clusters or distinct aggregations 3. They also can model physical processes 4.  The argument 
against using CAs for surface modeling is their need for a definition of spatial extent and the way in 
which growth is defined (i.e. local rules of interaction).  
  
Another approach is reaction-diffusion models 5.  Such a model is defined by coupled equations that 
incorporate concentrations of chemicals, non-linear reaction terms and diffusion constants.  Under the 
basic principles of local activation and long range inhibition, concentrations of the chemicals vary 
spatially and result in patterns.  The mathematical and chemistry oriented definitions of reaction-
diffusions models imply it is difficult to generate a desired pattern (or character of pattern). Thus, 
while potentially interesting as a means of directing architectural surface morphology, reaction-
diffusion models lack a means of straight-forward, clear interpretation that make them readily 
applicable to our domain of surface modeling. 
 
Agent-based models of pattern formation are yet another approach 6.  Such a model typically consists 
of a bounded environment with resources and behavioral entities or processes, termed agents.  Within 
the environment, time steps forward and agents navigate the space under behavioral specifications 
that take into account things such as: the need to collect resources, the need to stay away from 
malevolent environmental features and how to respond to other agents. Agents can both be "born" 
and "die". The system can be studied dynamically or at an end-point in time (e.g. when all resources 
are gone). Agents and resources are color coded in visualizations and their dynamics result in 
patterns.  We have used Artificial Life inspired agent-based computation in another project where we 
focus on the identification of elements in a design and the need to understand how they interact.   This 
seems a strength of agent-based models that is orthogonal to the goals of surface modeling. 
 
Perhaps the approach that is most successful at achieving morphogenetic outcomes that are faithful to 
biological reality is that of Lindenmayer systems 7,8.  L-Systems are capable of simulating the 
development of specific plants such as Mycelis muralis or Hieracium umbellatum, the hawkweed 
flower 9.  They originally specified a topology of branching structures but subsequently were updated 
with geometric interpretations that produce visualizations of developmental outcome.  As shall be 
explained in greater detail in Section 3.0, growth in an L-system is controlled by a context-free or 
context sensitive grammar that essentially is a set of re-write rules that are serially applied to an initial 
axiom.  The re-write rules can be interpreted geometrically. In three dimensional Cartesian space this 
geometry can be thought of as "agent" based. That is, an agent moves through space with a position 
vector and three orthogonal axis vectors. Its momentary orientation is determined on the basis of the 
re-write rule that might, for example, direct it to move ahead, upwards or to the side by a certain 
degree.   
 
There are elegant implementations of L-systems in both 2D and 3D available at this time, for 
example, Jacob 10. One that is particularly relevant and related to MoSS is that of Coates et al 11. 
Rather than manipulate grammars to develop surfaces, the Coates et al system develops branched 
structures in an isospatial grid by means of filling traversed points with spheres. This emphasizes a 
branching structure in which branches have 3D extent.  A goal of the Coates et al system is to study 
how function can direct form. The choice of an isospatial grid (in contrast to the 3D Cartesian grid of 



MoSS) wherein a point has 12 neighbors defined by a dodecahedron with equal point to point 
distances thus is deliberate since its lack of orthogonal bias and homogeneity allow for complete 
freedom in choosing form.  Coates et al's system searches for functional form using genetic 
programming 12.  At present, MoSS does not have a search component. It relies on its user to direct 
form by changing its inputs. Following the Coates et al lead, we intend to outfit MoSS with a genetic 
programming search component. The choice of objective function criteria for MoSS will differ, 
however, in a manner suitable to its potential intended purposes of aesthetic or load carrying 
satisfaction.  Coates et al's system has a 'design world' that has a directional supply of nutrients or 
pathogens. The role of these elements is to be either avoided or caught by the 3D structures. Thus, the 
structures can be evaluated in terms of how well they do this. Clearly, the distinctly different goals of 
MoSS and Coates et al have resulted in systems that yield distinctly different designs.   
 
3.0 A DESCRIPTION OF MoSS 
 MoSS is a plug-in to Alias|Wavefront Studio written in C++. It incorporates a specialized 
implementation of 3D L-systems and interfaces with A|W to draw its forms. The plug-in aspect 
implies MoSS is integrated with an existing CAD tool. This is compelling to its users as it provides 
them with the ability to use Alias|Wavefront capabilities on a completed MoSS design such as 
analysis, rendering, exporting or further modification. It is a feature for MoSS from an 
implementation point of view as it obviated the need to develop software that handles displaying and 
drawing. It also eliminated any necessity to add features not focused on the concept of L-systems. 
 
The software that implements the 3D L-systems consists of three components: 
1. Re-write rule application with its accompanying geometric drawing interpretation. 
2. The MoSS growth environment (i.e. boundaries, attractors and repellors) 
3. Filters for repairing surfaces that become disjoint as a result of attractor or repellor interaction. 
 
3.1 Re-Write Application and Surface Drawing:  
 
L-systems use re-write rules. These rules are used to construct a complex object starting from a 
simple one. The definition of the simple object, such as a text string, is progressively refined by 
replacing its parts, or substrings, with strings defined by the re-write rules.  Often the re-write rules 
and simple object are referred to as 'production rules and an axiom" or "generators and an initiator'.  
The set of text strings or productions that result from applying all re-write rules are termed a 
language.  An example is: 
 
W = a                          The axiom 
P1: a −> ab                 Production 1 
P2: b −>  ba                Production 2 
 
Language: 
Generation 0: a                                      
Generation 1: ab 
Generation 2: abba 
Generation 3- abbabaab 
Generation 4: abbabaabbaababba 
 
In L-systems, one starts with a text string axiom and re-write rules. Designated symbols in the axiom 
as it is progressively re-written are interpreted as geometric movements to move an "agent" in 2 or 3 
dimensional space. In 2D space, one symbol, typically F, means move forward plus draw a line 
segment and 2 other symbols, typically R or L mean rotate on the 2D plane left or right by alpha 
degrees where alpha is a parameter of the system.   
 
 



Assuming alpha is 90 degrees, with the grammar: 
 
W −>L 
L −> LLR 
R −> R 
 
In Generation 4 the rewritten axiom is: LLRLLRRLLRLLRRRLLRLLRRLLRLLRRRR.  Replacing 
every L with F- and every R with F+, the left hand image in Figure 1 is obtained. When the axiom is 
rewritten for 10 generations the well known dragon curve is recognizable (see right hand image of 
Figure 1). 
 

                                         
 

Figure 1: Generations 4 (left) and 10 (right) of the dragon curve grammar. 
 
 
In MoSS, which works in 3D space, we define alpha, beta and gamma as three angular degrees for 
specifying movement in the roll, pitch and yaw (X, Y, Z axes) directions. The symbols + and - 
indicate the agent is to roll the alpha specified degrees in either the positive or negative direction 
along the axis of movement. Likewise the symbols ^ and & indicate positive and negative pitch 
rotation and the symbols < and > indicate positive and negative yaw rotation. Movement forward in 
MoSS without drawing a line segment, is denoted by the symbol f in addition to the typical use of the 
symbol F for drawing a line segment.  As in all L-systems, MoSS interprets the symbols [ and ]. 
These symbols [ and ] represent the action of pushing and popping the agent state in space. Thus the 
agent's position can be 'memorized', it can perform movements from that point and then revert back to 
that point to perform other movements.  
 
In MoSS we focus on grammars that define surfaces. For example, given alpha=beta= gamma=90ο , a 
square is defined by: 
 
S−> F>F>F>F 

 
And, a cube is defined by making six calls to S to form each face followed by a command to return 
the agent to its original position, then a bracketed section to form the top of the box and, finally, 
placement of the box bottom: 
 
C−> Sf^Sf^Sf^Sf^[<^S]f>f^S 
 
A 2X2X2 block of cubes is created with two additional productions that, first, create 4 cubes in a 2X2 
square, then, second, stack two 2X2 squares on top of each other: 
 
B2−> CfC>fCf>fC 
B−> B2^f&B2 
 
 



Replication or infinite sequences are defined by recursive productions or recursively coupled 
productions. For example, an infinite series of cubes and blocks can be created by: 
 
W−> CfV 
V−> BffW 

 
 

Figure 2:  Square surface, cube, block of cubes and alternating set of cubes and blocks. 
 
 
3.2 The Environment  
 
In MoSS the environment dictates the final geometry of a surface or structure. Two parameters: 
resource level or max-generations, determine how large the outcome will be by either limiting the 
number of line segments drawn or the number of times the axiom is re-written.  The resource level is 
a simple way to model the cost and complexity of material in the real world. The user can potentially 
explore the limits of resources as they relate to constraining design while still experimenting with 
different designs via production rule changes.  Setting the maximum number of generations limits 
growth from the starting point radially. This proves useful when spatial distance from the origin is 
important. 
 
The environment includes a rectangular bounding volume to force growth (i.e. movement and 
drawing) within its limits. The line segment that would intersect a plane of the boundary non-
orthogonally is shifted to a legal position that allows its length to remain unchanged. An orthogonal 
intersection results in a random new direction being chosen. 
 

            
 
 

Figure 3:  MoSS running inside Alias|Wavefront API.  The black lines are the bounding box. 
 



An attractor or repellor is defined as a point in 3D space. Around this point movement and drawing is 
warped to force the movement closer to the attractor or farther from the repellor. The amount of 
warping depends on distance from the attractor or repellor and the force of the attractor or repellor. 
This force is parameterized for the user to set. Attractors and repellors significantly alter the 
generated surface from its specification in axiom and production rule terms.  They can be used to 
represent various factors in the 'real' environment, for example, topographic features. 

                                 
 

Figure 4:  Effect of attractors and repellors on direction of growth. Repellors are indicated by 
sideways T and attractors by plus sign. 

 
 
However, one important issue arises regarding the attractors and repellors. They disrupt the joints of 
surface plates and bend them away from each other leaving gaps.  We have given our users two 
choices. The first (and simplest) is to accept the resultant gaps because they meaningfully relate to 
some modeled feature where the discontinuity is desirable or interesting. Second, we provide filters to 
repair the gaps. These are now described. 
 
 
3.3 Filters  
 
MoSS currently has three filters that address, in various ways, the distortion of surface geometry due 
to the effects of attractors and repellors.  All filters attempt to move vertices on the surface so that 
they match up to their neighbors and form a closed surface.   
 
The first filter, Filter 1, parses the set of surface vertices after the initial grammar generation and joins 
surface vertices within a certain radius of each other. This radius is specified as a Filter 1 threshold 
parameter. If there are more than three vertices, Filter 1 tends to leave gaps. The advantage of Filter 1 
is that it works with all grammars since it is not dependent on number of surface vertices. It also joins 
any surfaces that are close together regardless of lines of growth. That is surfaces generated in 
different generations will be united even though, timewise, they are unrelated.  
 
Filter 2 is an optimization of the principle that drives Filter 1 and is specifically used when the 
grammar defines hexagonal surfaces.  It locates three vertices that are closest to one another and then 
converts them to a single vertex by averaging. This effectively closes any gap under a certain limit of 
discontinuity. This limit is parameterized numerically in terms of distance. Vertex merging is limited 
to vertices within a maximum distance from each other 
 
Filter 3 is based on the idea of using the links which derive from the non-deformed grammar as the 
pattern for joining the surfaces after the attractor and repellers have asserted their effect. Using this 
filter guarantees a grammar that forms a continuous surface in an environment without attractors and 
repellors will form a continuous surface in an environment with them as well. It advantageously 
makes the outcome more predictable.  Each filter can be used exclusively or not at all. 



                               
                          

Figure 5: Illustration and Flow Diagram of Filter 3 
 
 
4.0 CAD/CAM OUTPUT 
 In this section we describe the process of producing counterpart three-dimensional physical 
models. Three dimensional MoSS surfaces are unfolded using CAD/CAM software (Autodessys 
FormZ) into two dimensional format.  These patterns are cut using a flat bed laser cutter.  
 
The laser cutter alternately cuts and scores the surface allowing for reassembly of the complex 
curvature of any MoSS generated surface. These models may be produced in a wide range of 
mediums, including cardboard, plastic, aluminum and wood material.  The three dimensional models 
are an important extension of MoSS as they allow the designer to evaluate the form and study the 
potential subdivision and joining of surface plates with a view towards manufacturing.  The 
construction of surfaces may not necessarily follow the same scale or geometry of the generated 
MoSS geometry, as plates may be grouped in larger segments and then joined to form a continuos 
surface.  The production of physical models is the first step towards an integrated system using 
structural analysis, material properties, finite element analysis (FEA) and  CAD/CAM.  This 
orientation is particularly interesting in light of advances in rapid prototyping which allow for 
diversity in the production process at little extra cost leading to locally optimized solutions.   
 
 

 
 

Figure 6: Laser cut three dimensional model of MoSS surface generated with hexagonal grammar. 



 
 

Figure 7: Laser cut three dimensional model of Moss surface generated with square grammar and 
grown with two offset surfaces. Note the tessellated pattern combines the MoSS grammar with the cut 

and score lines of the unfold software. 
 
 
5.0 Appraisal and Future Work 
 How does MoSS meet our goals and expectations given the time invested to date in developing 
it?  We are convinced that the L-system method of generating surfaces is a powerful and 
advantageous approach in many ways. L-systems allow a wide range of powerful expression and, 
given experience with students using MoSS, the concepts of grammatical definition and re-writing are 
simple for users to grasp.  While it is not straightforward to use repellors and attractors to influence L-
system growth (because they result in disjoint geometry), our filter methods surmount this issue.  
Through experience using MoSS the compelling reason for L-systems remains their ability to mimic 
morphogenesis and yield outcomes that are natural in aesthetic, unanticipated to an acceptable degree, 
and controllable in a simple manner.  This will always differentiate MoSS from computer aided 
designs. 
 
MoSS is still extremely rudimentary. Founding it on the L-system concept is a solid cornerstone for 
future development.  Another positive action in MoSS's development has been that we are quickly 
handing the system (though prototypical and minimally user interfaced) to architects to use. Thus, we 
are receiving feedback very early and continually in the tool development process. This has been 
useful in indicating what we should work on next when, at most points, we find there are a variety of 
directions we could pursue. For instance, we have delayed adding the search component until we are 
satisfied that a single design can be grown which meets a user's demands. Only once we have a setup 
for growing a completely satisfactory design, will we add a component that searches for designs 
within a design space.  
 
Another lesson from users exercising MoSS concerns the fact that MoSS has been used in a process 
that culminates in physical models.  When the project was initiated, the computer scientists on the 
project understood the architects' interest in morphogenesis. However, it was difficult for them to 
grasp how architects would use MoSS surfaces after they were rendered in Alias|Wavefront. This 
prevented them from thinking of extensions to MoSS.  The impressive physical models and the 
process of moving from MoSS, to 2D cutting layout, to laser cutting, and, finally, to physical models 
informed us that architects view MoSS as a tool within a series of tools.  Another impression from 
users was that MoSS, in its current state, is primarily a stepping off point for creative design 
investigation.  MoSS appears to play a role for architects in the early, conceptual stages of their 
design process. Its present value is in stimulation, surprise and experimentation.   
 
 
 



Impressions of current ability stated, our users have also helped us prioritize future extensions. They 
have reported several areas in which they would like MoSS to be strengthened including an improved 
user interface. While they find the current specification of grammars through file input adequate, they 
report that being able to manipulate the strength and placement of attractors and repellors from the 
display and, perhaps, even between generations of re-writing would be beneficial.  They also would 
like to be able to interact with the system's drawing between generations and have their changes 
impact the next generation's growth. This is consistent with another notion they express: while they 
can now grow multiple surfaces in one environment, these surfaces, if they intersect, have no impact 
on each other. In general, the system would be more powerful if growth was responsive, not just to 
attractors, repellors and the boundaries, but also to other objects in the environment. 
 
In future developments we intend to explore four different interpretations of growth.  All four models 
have a grammar based growth model in common.  These developments can be classified into two 
groups: one directional and two directional growth. 
 
One-directional growth: 
a) Lindenmayer systems.  As in the current instantiation of MoSS growth is one directional and once 
a member has been established the growth mechanism does not alter it. 
b) Cellular model of growth.  Instead of linear growth with one tip, growth could also be implemented 
using a model of cellular growth where each cell expands constantly after it has been created until it 
collides with neighboring cells sharing the same space. 
 
Two-directional growth: 
c) Adaptive model of growth.  In this model generated geometry would adapt with the appearance of 
new environmental forces.  This would require that the grown structure be aware of all its members. 
d) Recursive model of growth.  A model whereby the growth tips would search the environment for 
possible joining nodes.  Upon detection of a suitable node a connection would be established 
replacing the search branch with a load bearing one.  This process involves backtracking and 
evaluating the search paths and replacing parts of earlier growth. 
 
 

                                
 
 

Figure 8:  Interpretations of grammar based growth as a basis for possible extensions of MoSS. 
 
 
Finally, MoSS, at present, assists with the development of a single concept. It does not actively search 
out designs that meet criteria an architect may have already formulated. We intend to add a genetic 
programming (GP) search component to MoSS. GP is inspired by neo-Darwinian evolution. A 
population of designs is tested for fitness, the fitter designs are chosen probabilistically more often to 
pair and generate 'offspring' designs and, generations later, a design which ultimately meets the 
fitness criteria adequately is found through this iterative process of selection, inheritance and 
variation. GP requires an encoding for designs. The encoding of MoSS designs as L-system 
grammars is a appropriate match for GP because they can be interpreted as tree structures that GP can 



crossover or mutate.  GP also requires a fitness function. This is essentially an objective function by 
which designs can be differentiated and ranked.  Determining an effective, user tunable objective 
function for MoSS remains an open issue.  We have ideas for quantitative factors and are considering 
a subjective ranking interface to account for aesthetic value.  The architects who have used MoSS 
have contributed essential feedback on this issue. At this point, MoSS has no knowledge of support or 
load.  A consideration of these factors may enable us to move MoSS beyond its current contribution 
of stimulating exploration at an early design concept stage to a more practical stage when materials, 
weight and bearing are considered. We hope to exploit existing software to evaluate MoSS designs. 
This will reinforce our approach not to re-write any tool or component already in existence but, 
instead, to interface seamlessly with them. This extension would also be suitable for expressing a 
fitness function for the search component.   
 
In summary, this is a report on a rudimentary morphogenetic surface design tool named MoSS. 
MoSS, written in C++ as a plug-in to Alias|Wavefront. MoSS is based on 3D L-systems and 
facilitates the growth of surfaces within an environment defined by boundaries, attractors and 
repellors. MoSS has thus far provided its users with stimulating design exploration capacity. Its 
foundation on L-systems has proved effective and MoSS is now ready for extensions that will enable 
it to be even more practical and powerful. 
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