
MoSS: Morphogenetic Surface Structure
A Software Tool for Design Exploration

Peter Testa, Department of Architecture, MIT
Una-May O'Reilly, Artificial Intelligence Laboratory, MIT

Markus Kangas, Department of Electrical Engineering, Computer Science, MIT
Axel Kilian, Department of Architecture, MIT

ABSTRACT
 We report our progress in designing a modeling software tool we have called MoSS:
Morphogenetic Surface Structure. Moss is based on Lindenmayer systems in three dimensions which
“grow” surfaces by applying re-write rules to an axiom with an accompanying interpretation of
movement and drawing in space. It is written in C++ as a plug-in to Alias|Wavefront Studio. The
tool, still rudimentary, allows an environment to be defined to influence surface growth by means of
boundaries and objects that attract or repel direction of growth. It optionally applies different joining
filters to surfaces that become disjoint as a result of encountering environmental factors.

1.0 INTRODUCTION
 Modern CAD tools such as AutoCAD or Alias|Wavefront Studio allow architects to hand-draw
three dimensional surfaces and volumes. However, this capability falls short of software that actively
enables designs with deliberate precision or that demonstrates adaptiveness to site conditions. We
have also noted that architects frequently take inspiration from natural forms and the process of
organic growth. As a response to these initial issues, we have designed a tool called MoSS:
Morphogenetic Surface Structure. The initial goal of the MoSS tool project is to provide architects
with a model of surface growth in three dimensions that can be simply, yet precisely, defined and
understood. In addition, our goal is that as growth is influenced by tunable factors an architect can use
MoSS to model surface geometry within a three dimensional shaping environment. With a
rudimentary version of such a tool in place, we have two further intentions that we can report have
been fulfilled. First, we have encouraged architecture students to use MoSS so we can learn how its
users engage it and what they find useful or limiting. We report on this activity in this paper. Second,
we have always foreseen the need for MoSS to fit into a larger design process; one that includes the
construction of physical models and structural elements using computer aided manufacturing
processes (CAD/CAM). In this report we will present examples of such steps in the process. The
culminations are descriptions and images of physical surface constructions that were first generated
using MoSS, unfolded using CAD/CAM software into two dimensional format for laser cutting, and
assembled to form three dimensional counterpart physical models.

The paper proceeds as follows: Immediately, in Section 2.0, we will briefly discuss work related to
MoSS. In Section 3.0 we will describe the computational basis of MoSS. That is, we will explain how
Lindenmayer systems (L-systems) work and how we used the principles of L-systems to implement a
surface modeler inside a CAD tool. We then describe features of MoSS that are particular to its
context of use. In Section 4.0 we present a number of examples of MoSS. Each example can be
simply defined in terms of its grammar and axiom plus the state of the environment in terms of
boundary, attractors or repellors. However, a complex design results from re-writing the axiom and
interpreting it as drawing instructions. The MoSS derived design will be shown as a computer
generated image. For some examples, we will also show the physical model resulting from the MoSS
design. Our current appraisal of the project will comprise Section 5.0. We include observations about
MoSS in its current prototypical state and our plans on how to extend it in the future.

2.0 RELATED WORK
 A significant motivation with MoSS is to model the development of pattern, form, and surface
structures in the domain of architecture. In this context a number of computational approaches to
modeling morphogenesis are compelling to study. One approach is cellular automata (CA) models 1.
CAs can be uni-dimensional 2, two dimensional or even higher dimensional. A CA is a spatial system
consisting of units (cells) that have state. As time in the model steps forward, one or more cells
update their states based on the states of neighboring cells and, optionally, random probability. From
typically simple and local rules of interaction, the global state of the entire cell array emerges.
Analysis of the local rules typically does not yield a description of the global state. When CAs are
visualized states are represented by colors. This highlights patterns representing emergent
interactions. CAs have been defined that are accurate models of actual physical systems which grow
into clusters or distinct aggregations 3. They also can model physical processes 4. The argument
against using CAs for surface modeling is their need for a definition of spatial extent and the way in
which growth is defined (i.e. local rules of interaction).

Another approach is reaction-diffusion models 5. Such a model is defined by coupled equations that
incorporate concentrations of chemicals, non-linear reaction terms and diffusion constants. Under the
basic principles of local activation and long range inhibition, concentrations of the chemicals vary
spatially and result in patterns. The mathematical and chemistry oriented definitions of reaction-
diffusions models imply it is difficult to generate a desired pattern (or character of pattern). Thus,
while potentially interesting as a means of directing architectural surface morphology, reaction-
diffusion models lack a means of straight-forward, clear interpretation that make them readily
applicable to our domain of surface modeling.

Agent-based models of pattern formation are yet another approach 6. Such a model typically consists
of a bounded environment with resources and behavioral entities or processes, termed agents. Within
the environment, time steps forward and agents navigate the space under behavioral specifications
that take into account things such as: the need to collect resources, the need to stay away from
malevolent environmental features and how to respond to other agents. Agents can both be "born"
and "die". The system can be studied dynamically or at an end-point in time (e.g. when all resources
are gone). Agents and resources are color coded in visualizations and their dynamics result in
patterns. We have used Artificial Life inspired agent-based computation in another project where we
focus on the identification of elements in a design and the need to understand how they interact. This
seems a strength of agent-based models that is orthogonal to the goals of surface modeling.

Perhaps the approach that is most successful at achieving morphogenetic outcomes that are faithful to
biological reality is that of Lindenmayer systems 7,8. L-Systems are capable of simulating the
development of specific plants such as Mycelis muralis or Hieracium umbellatum, the hawkweed
flower 9. They originally specified a topology of branching structures but subsequently were updated
with geometric interpretations that produce visualizations of developmental outcome. As shall be
explained in greater detail in Section 3.0, growth in an L-system is controlled by a context-free or
context sensitive grammar that essentially is a set of re-write rules that are serially applied to an initial
axiom. The re-write rules can be interpreted geometrically. In three dimensional Cartesian space this
geometry can be thought of as "agent" based. That is, an agent moves through space with a position
vector and three orthogonal axis vectors. Its momentary orientation is determined on the basis of the
re-write rule that might, for example, direct it to move ahead, upwards or to the side by a certain
degree.

There are elegant implementations of L-systems in both 2D and 3D available at this time, for
example, Jacob 10. One that is particularly relevant and related to MoSS is that of Coates et al 11.
Rather than manipulate grammars to develop surfaces, the Coates et al system develops branched
structures in an isospatial grid by means of filling traversed points with spheres. This emphasizes a
branching structure in which branches have 3D extent. A goal of the Coates et al system is to study
how function can direct form. The choice of an isospatial grid (in contrast to the 3D Cartesian grid of

MoSS) wherein a point has 12 neighbors defined by a dodecahedron with equal point to point
distances thus is deliberate since its lack of orthogonal bias and homogeneity allow for complete
freedom in choosing form. Coates et al's system searches for functional form using genetic
programming 12. At present, MoSS does not have a search component. It relies on its user to direct
form by changing its inputs. Following the Coates et al lead, we intend to outfit MoSS with a genetic
programming search component. The choice of objective function criteria for MoSS will differ,
however, in a manner suitable to its potential intended purposes of aesthetic or load carrying
satisfaction. Coates et al's system has a 'design world' that has a directional supply of nutrients or
pathogens. The role of these elements is to be either avoided or caught by the 3D structures. Thus, the
structures can be evaluated in terms of how well they do this. Clearly, the distinctly different goals of
MoSS and Coates et al have resulted in systems that yield distinctly different designs.

3.0 A DESCRIPTION OF MoSS
 MoSS is a plug-in to Alias|Wavefront Studio written in C++. It incorporates a specialized
implementation of 3D L-systems and interfaces with A|W to draw its forms. The plug-in aspect
implies MoSS is integrated with an existing CAD tool. This is compelling to its users as it provides
them with the ability to use Alias|Wavefront capabilities on a completed MoSS design such as
analysis, rendering, exporting or further modification. It is a feature for MoSS from an
implementation point of view as it obviated the need to develop software that handles displaying and
drawing. It also eliminated any necessity to add features not focused on the concept of L-systems.

The software that implements the 3D L-systems consists of three components:
1. Re-write rule application with its accompanying geometric drawing interpretation.
2. The MoSS growth environment (i.e. boundaries, attractors and repellors)
3. Filters for repairing surfaces that become disjoint as a result of attractor or repellor interaction.

3.1 Re-Write Application and Surface Drawing:

L-systems use re-write rules. These rules are used to construct a complex object starting from a
simple one. The definition of the simple object, such as a text string, is progressively refined by
replacing its parts, or substrings, with strings defined by the re-write rules. Often the re-write rules
and simple object are referred to as 'production rules and an axiom" or "generators and an initiator'.
The set of text strings or productions that result from applying all re-write rules are termed a
language. An example is:

W = a The axiom
P1: a −> ab Production 1
P2: b −> ba Production 2

Language:
Generation 0: a
Generation 1: ab
Generation 2: abba
Generation 3- abbabaab
Generation 4: abbabaabbaababba

In L-systems, one starts with a text string axiom and re-write rules. Designated symbols in the axiom
as it is progressively re-written are interpreted as geometric movements to move an "agent" in 2 or 3
dimensional space. In 2D space, one symbol, typically F, means move forward plus draw a line
segment and 2 other symbols, typically R or L mean rotate on the 2D plane left or right by alpha
degrees where alpha is a parameter of the system.

Assuming alpha is 90 degrees, with the grammar:

W −>L
L −> LLR
R −> R

In Generation 4 the rewritten axiom is: LLRLLRRLLRLLRRRLLRLLRRLLRLLRRRR. Replacing
every L with F- and every R with F+, the left hand image in Figure 1 is obtained. When the axiom is
rewritten for 10 generations the well known dragon curve is recognizable (see right hand image of
Figure 1).

Figure 1: Generations 4 (left) and 10 (right) of the dragon curve grammar.

In MoSS, which works in 3D space, we define alpha, beta and gamma as three angular degrees for
specifying movement in the roll, pitch and yaw (X, Y, Z axes) directions. The symbols + and -
indicate the agent is to roll the alpha specified degrees in either the positive or negative direction
along the axis of movement. Likewise the symbols ^ and & indicate positive and negative pitch
rotation and the symbols < and > indicate positive and negative yaw rotation. Movement forward in
MoSS without drawing a line segment, is denoted by the symbol f in addition to the typical use of the
symbol F for drawing a line segment. As in all L-systems, MoSS interprets the symbols [and].
These symbols [and] represent the action of pushing and popping the agent state in space. Thus the
agent's position can be 'memorized', it can perform movements from that point and then revert back to
that point to perform other movements.

In MoSS we focus on grammars that define surfaces. For example, given alpha=beta= gamma=90ο , a
square is defined by:

S−> F>F>F>F

And, a cube is defined by making six calls to S to form each face followed by a command to return
the agent to its original position, then a bracketed section to form the top of the box and, finally,
placement of the box bottom:

C−> Sf^Sf^Sf^Sf^[<^S]f>f^S

A 2X2X2 block of cubes is created with two additional productions that, first, create 4 cubes in a 2X2
square, then, second, stack two 2X2 squares on top of each other:

B2−> CfC>fCf>fC
B−> B2^f&B2

Replication or infinite sequences are defined by recursive productions or recursively coupled
productions. For example, an infinite series of cubes and blocks can be created by:

W−> CfV
V−> BffW

Figure 2: Square surface, cube, block of cubes and alternating set of cubes and blocks.

3.2 The Environment

In MoSS the environment dictates the final geometry of a surface or structure. Two parameters:
resource level or max-generations, determine how large the outcome will be by either limiting the
number of line segments drawn or the number of times the axiom is re-written. The resource level is
a simple way to model the cost and complexity of material in the real world. The user can potentially
explore the limits of resources as they relate to constraining design while still experimenting with
different designs via production rule changes. Setting the maximum number of generations limits
growth from the starting point radially. This proves useful when spatial distance from the origin is
important.

The environment includes a rectangular bounding volume to force growth (i.e. movement and
drawing) within its limits. The line segment that would intersect a plane of the boundary non-
orthogonally is shifted to a legal position that allows its length to remain unchanged. An orthogonal
intersection results in a random new direction being chosen.

Figure 3: MoSS running inside Alias|Wavefront API. The black lines are the bounding box.

An attractor or repellor is defined as a point in 3D space. Around this point movement and drawing is
warped to force the movement closer to the attractor or farther from the repellor. The amount of
warping depends on distance from the attractor or repellor and the force of the attractor or repellor.
This force is parameterized for the user to set. Attractors and repellors significantly alter the
generated surface from its specification in axiom and production rule terms. They can be used to
represent various factors in the 'real' environment, for example, topographic features.

Figure 4: Effect of attractors and repellors on direction of growth. Repellors are indicated by
sideways T and attractors by plus sign.

However, one important issue arises regarding the attractors and repellors. They disrupt the joints of
surface plates and bend them away from each other leaving gaps. We have given our users two
choices. The first (and simplest) is to accept the resultant gaps because they meaningfully relate to
some modeled feature where the discontinuity is desirable or interesting. Second, we provide filters to
repair the gaps. These are now described.

3.3 Filters

MoSS currently has three filters that address, in various ways, the distortion of surface geometry due
to the effects of attractors and repellors. All filters attempt to move vertices on the surface so that
they match up to their neighbors and form a closed surface.

The first filter, Filter 1, parses the set of surface vertices after the initial grammar generation and joins
surface vertices within a certain radius of each other. This radius is specified as a Filter 1 threshold
parameter. If there are more than three vertices, Filter 1 tends to leave gaps. The advantage of Filter 1
is that it works with all grammars since it is not dependent on number of surface vertices. It also joins
any surfaces that are close together regardless of lines of growth. That is surfaces generated in
different generations will be united even though, timewise, they are unrelated.

Filter 2 is an optimization of the principle that drives Filter 1 and is specifically used when the
grammar defines hexagonal surfaces. It locates three vertices that are closest to one another and then
converts them to a single vertex by averaging. This effectively closes any gap under a certain limit of
discontinuity. This limit is parameterized numerically in terms of distance. Vertex merging is limited
to vertices within a maximum distance from each other

Filter 3 is based on the idea of using the links which derive from the non-deformed grammar as the
pattern for joining the surfaces after the attractor and repellers have asserted their effect. Using this
filter guarantees a grammar that forms a continuous surface in an environment without attractors and
repellors will form a continuous surface in an environment with them as well. It advantageously
makes the outcome more predictable. Each filter can be used exclusively or not at all.

Figure 5: Illustration and Flow Diagram of Filter 3

4.0 CAD/CAM OUTPUT
 In this section we describe the process of producing counterpart three-dimensional physical
models. Three dimensional MoSS surfaces are unfolded using CAD/CAM software (Autodessys
FormZ) into two dimensional format. These patterns are cut using a flat bed laser cutter.

The laser cutter alternately cuts and scores the surface allowing for reassembly of the complex
curvature of any MoSS generated surface. These models may be produced in a wide range of
mediums, including cardboard, plastic, aluminum and wood material. The three dimensional models
are an important extension of MoSS as they allow the designer to evaluate the form and study the
potential subdivision and joining of surface plates with a view towards manufacturing. The
construction of surfaces may not necessarily follow the same scale or geometry of the generated
MoSS geometry, as plates may be grouped in larger segments and then joined to form a continuos
surface. The production of physical models is the first step towards an integrated system using
structural analysis, material properties, finite element analysis (FEA) and CAD/CAM. This
orientation is particularly interesting in light of advances in rapid prototyping which allow for
diversity in the production process at little extra cost leading to locally optimized solutions.

Figure 6: Laser cut three dimensional model of MoSS surface generated with hexagonal grammar.

Figure 7: Laser cut three dimensional model of Moss surface generated with square grammar and
grown with two offset surfaces. Note the tessellated pattern combines the MoSS grammar with the cut

and score lines of the unfold software.

5.0 Appraisal and Future Work
 How does MoSS meet our goals and expectations given the time invested to date in developing
it? We are convinced that the L-system method of generating surfaces is a powerful and
advantageous approach in many ways. L-systems allow a wide range of powerful expression and,
given experience with students using MoSS, the concepts of grammatical definition and re-writing are
simple for users to grasp. While it is not straightforward to use repellors and attractors to influence L-
system growth (because they result in disjoint geometry), our filter methods surmount this issue.
Through experience using MoSS the compelling reason for L-systems remains their ability to mimic
morphogenesis and yield outcomes that are natural in aesthetic, unanticipated to an acceptable degree,
and controllable in a simple manner. This will always differentiate MoSS from computer aided
designs.

MoSS is still extremely rudimentary. Founding it on the L-system concept is a solid cornerstone for
future development. Another positive action in MoSS's development has been that we are quickly
handing the system (though prototypical and minimally user interfaced) to architects to use. Thus, we
are receiving feedback very early and continually in the tool development process. This has been
useful in indicating what we should work on next when, at most points, we find there are a variety of
directions we could pursue. For instance, we have delayed adding the search component until we are
satisfied that a single design can be grown which meets a user's demands. Only once we have a setup
for growing a completely satisfactory design, will we add a component that searches for designs
within a design space.

Another lesson from users exercising MoSS concerns the fact that MoSS has been used in a process
that culminates in physical models. When the project was initiated, the computer scientists on the
project understood the architects' interest in morphogenesis. However, it was difficult for them to
grasp how architects would use MoSS surfaces after they were rendered in Alias|Wavefront. This
prevented them from thinking of extensions to MoSS. The impressive physical models and the
process of moving from MoSS, to 2D cutting layout, to laser cutting, and, finally, to physical models
informed us that architects view MoSS as a tool within a series of tools. Another impression from
users was that MoSS, in its current state, is primarily a stepping off point for creative design
investigation. MoSS appears to play a role for architects in the early, conceptual stages of their
design process. Its present value is in stimulation, surprise and experimentation.

Impressions of current ability stated, our users have also helped us prioritize future extensions. They
have reported several areas in which they would like MoSS to be strengthened including an improved
user interface. While they find the current specification of grammars through file input adequate, they
report that being able to manipulate the strength and placement of attractors and repellors from the
display and, perhaps, even between generations of re-writing would be beneficial. They also would
like to be able to interact with the system's drawing between generations and have their changes
impact the next generation's growth. This is consistent with another notion they express: while they
can now grow multiple surfaces in one environment, these surfaces, if they intersect, have no impact
on each other. In general, the system would be more powerful if growth was responsive, not just to
attractors, repellors and the boundaries, but also to other objects in the environment.

In future developments we intend to explore four different interpretations of growth. All four models
have a grammar based growth model in common. These developments can be classified into two
groups: one directional and two directional growth.

One-directional growth:
a) Lindenmayer systems. As in the current instantiation of MoSS growth is one directional and once
a member has been established the growth mechanism does not alter it.
b) Cellular model of growth. Instead of linear growth with one tip, growth could also be implemented
using a model of cellular growth where each cell expands constantly after it has been created until it
collides with neighboring cells sharing the same space.

Two-directional growth:
c) Adaptive model of growth. In this model generated geometry would adapt with the appearance of
new environmental forces. This would require that the grown structure be aware of all its members.
d) Recursive model of growth. A model whereby the growth tips would search the environment for
possible joining nodes. Upon detection of a suitable node a connection would be established
replacing the search branch with a load bearing one. This process involves backtracking and
evaluating the search paths and replacing parts of earlier growth.

Figure 8: Interpretations of grammar based growth as a basis for possible extensions of MoSS.

Finally, MoSS, at present, assists with the development of a single concept. It does not actively search
out designs that meet criteria an architect may have already formulated. We intend to add a genetic
programming (GP) search component to MoSS. GP is inspired by neo-Darwinian evolution. A
population of designs is tested for fitness, the fitter designs are chosen probabilistically more often to
pair and generate 'offspring' designs and, generations later, a design which ultimately meets the
fitness criteria adequately is found through this iterative process of selection, inheritance and
variation. GP requires an encoding for designs. The encoding of MoSS designs as L-system
grammars is a appropriate match for GP because they can be interpreted as tree structures that GP can

crossover or mutate. GP also requires a fitness function. This is essentially an objective function by
which designs can be differentiated and ranked. Determining an effective, user tunable objective
function for MoSS remains an open issue. We have ideas for quantitative factors and are considering
a subjective ranking interface to account for aesthetic value. The architects who have used MoSS
have contributed essential feedback on this issue. At this point, MoSS has no knowledge of support or
load. A consideration of these factors may enable us to move MoSS beyond its current contribution
of stimulating exploration at an early design concept stage to a more practical stage when materials,
weight and bearing are considered. We hope to exploit existing software to evaluate MoSS designs.
This will reinforce our approach not to re-write any tool or component already in existence but,
instead, to interface seamlessly with them. This extension would also be suitable for expressing a
fitness function for the search component.

In summary, this is a report on a rudimentary morphogenetic surface design tool named MoSS.
MoSS, written in C++ as a plug-in to Alias|Wavefront. MoSS is based on 3D L-systems and
facilitates the growth of surfaces within an environment defined by boundaries, attractors and
repellors. MoSS has thus far provided its users with stimulating design exploration capacity. Its
foundation on L-systems has proved effective and MoSS is now ready for extensions that will enable
it to be even more practical and powerful.

REFERENCES

1

J. Demongeot, E. Goles and M. Tchuente, eds. (1985). Dynamical Systems and Cellular
Automata, Academic Press.

2

M. Gardner (1971). The fantastic combinations of John Conway's new solitaire game "Life".
Scientific American, 223, 120-123.

3

J.B. L. Bard (1981). A model for generating aspects of zebra and other mammalian coat patterns.
Journal of Theoretical Biology, 93, 363-385.

4

U. Frisch, B. Hasslacher and Y. Pomeau (1986). Lattice-gas automata for the navier-stokes
equation. Physical Review Letters, 56, 1505-1508.

5

A.M. Turing (1952). The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London, Series B, 237, 37-72.

6

 Eric Bonabeau (1997). From classical models of morphogenesis to agent-based models of pattern
formation. Artificial Life 3, 191-211.

7

Lindenmayer, A. and P. Prusinkiewicz (1989). "Developmental Models of Multicellular
Organisms: A Computer Graphics Perspective". In Artificial Life. Santa Fe Institute Studies in
the Sciences of Complexity, Proc. Vol. VI. Reading, MA: Addison-Wesley.

8

Prusinkiewicz, P. and J. Hahn (1989). Lindenmayer Systems, Fractals and Plants. Springer Verlag
Lecture Notes in Biomathematics, No. 79.

9

P. Prusinkiewicz and A. Lindenmayer (1990). The Algorithmic Beauty of Plants, Springer
Verlag. With J.S. Hanan, F. D. Fracchia, D.R. Fowler, M.J.M. de Boer, and L. Mercer.

10

C. Jacob (1996). Evolving Evolution Programs: Genetic Programs and L-Systems. Proceedings of
the First Genetic Programming Conference, MIT Press, 107-115.

11

P. Coates, T. Broughton and Helen Jackson (1999). Exploring three-dimensional design worlds
using Lindenmayer systems and genetic programming. Evolutionary Design by Computers,
Morgan Kaufmann, 323-341.

12

J. Koza (1992). Genetic Programming, or the Programming of Computers by Means of Natural
Selection, MIT Press.

