
1

CatenaryCAD:
An Architectural Design Tool
Final Project Report

Team Sixteen
Dan Chak
Megan Galbraith
Axel Kilian

6.837 Computer Graphics
Professors: Seth Teller and Fredo Durand
TA’s: Addy Ngan and Jingyi Yu

2

Table of Contents

1. Abstract
2. Introduction
3. Goals
4. Individual Contributions
5. Achievements
6. Lessons Learned
7. Deliverables
8. Acknowledgements
9. Bibliography

Abstract

The architect Antonio Gaudi designed complex structures based on cat-
enary systems. His beautiful forms were created by suspending pieces of
string from hooks, deforming them with weights and other strings, then
inverting the form to create the structural elements.

Today’s architects are at a loss to reproduce these types of catenary forms
when using even the most advanced design tools on the market. For
our final project, we aim to provide a computationally enhanced version
of Gaudi’s atelier. We are creating the design software for architects inter-
ested in building models using catenary systems. The tool is implemented
in C++ and Tcl/Tk, and intented to be used for both construction and
analysis of catenary forms.

3

Introduction

Antonio Gaudi developed a design technique which allows architects
to design complex structures based on catenary systems. The curves in
catenary systems are formed by perfectly flexible, uniformly dense strings
suspended from their endpoints and weighted under gravity. Gaudi cre-
ated many amazing structures using pieces of string - structures that
architects would be at a loss to try and reproduce today using even most
advanced design tools on the market. For this final project, we aim to
provide a computationally enhanced version of Gaudi’s atelier. Rather than
simply allowing an architect to arrange geometric primitives, as they can
in AutoCad and other design tools, we instead wanted to provide an
environment in which strings responding to gravity and can be arranged
to form structures that are far more organic and beautiful.

Catenary systems have been used for construction in Catalan areas of
Spain for a long time. For example, if a Catalan stair is to be constructed,
the form is not detailed by the planners or architects. Instead, the masons
on site hang a rope between the point of departure and the point to be
reached, trace the shape, and flip the curve over to use as the guide for
constructing the masonry arch that carries the stairs. The rope is in pure

tension, as it can not take any compression due to
its flexibility. Therefore the form it finds contains the
pure tensile force within the envelope of the string.
Inverting the parabola results in the pure compression
arch necessary for brick construction, which cannot
take any tensile forces.

Antonio Gaudi developed the system of translating
catenary string statics into a spatial design system.
He constructed scaled models of his design ideas by
developing forms through a weighted string form-
finding method. In his case, the models are spatial
and are much more complex then the catenary stair-
case example. Gaudi achieved the desired forms

Steel bridge
When inverted, the arches
can be identified as catenary
shapes (approximately) with the
vertical members in pure
compression. This bridge is not
a design by Gaudi, it illustrates
principle of catenary systems.

4

through the control of three variables - anchor points of the strings, the
length of the strings, and the weights attached to them. By designing
forms this way, Gaudi knew that the resulting geometry would act purely
in compression when inverted. He also had a fairly precise estimate of the
loads necessary on the different members of his construction. Therefore,
Gaudi could construct buildings that would not collapse or require extra
support structures.

Beyond structural form finding, Gaudi also used the catenary method
for rendering the interior and exterior shapes of buildings. He imagined
interiors by painting and tracing over the “wire frame” models of lines,
which were simply photos of his string forms.

For this project, we have chosen to create a design tool for architects that
differs in its approach to form-finding from current tools likes AutoCad,
Rhino, SoftImage, or Maya. CAD packages take the task of drafting and
add in the power of computation in order to make more complex and
interesting buildings possible. Software tools allow designers to experi-
ment with other shapes, merging computational power with form finding
methods that result in more interesting architecture and new styles. Maya
and other programs are modelling tools rather than generative tools.

Tools are an essential part of production in any field. Even tool-building
itself relies on other tools, with the most basic of all tools being the
human hands. People who have the ability to create their own tools are
limited only by their imaginations in what they can do. Meanwhile, those
that are not tool-builders are limited in what they can accomplish not
merely by their imaginations, but also by the tools they have available
to use.

In computer graphics, it seems that many of the tools built are meant
to service other computer graphics tasks. With the exception of the
movie industry, research in computer graphics rarely impacts fields other

than the computer graphics field itself. For
example, faster rendering techniques and other
advances in computer graphics are interesting,
but researchers should address how these tech-
niques can be used in new contexts and out-
side the exclusively visual domain. There are
many fields that could benefit from tools that
use the state-of-the-art in computer graphics.

Gaudi’s rendering technique
Gaudi used photographs of the
string models literally as wire-
frame models, filling in the sur-
faces with paint to create an
impression of the spaces that
would be created.

5

We hope the creation of our catenary design tool will help contemporary
architects realize the beautiful, Gaudi-inspired shapes and means through
computational methods rather than physically sitting at their desks tying
strings together. Computer-aided catenary designs will be quicker and
provide room for playing, trial and error, and potentially provide a means
to create more complex designs than imagined in the physical world.
In addition, we hope our tool will help expand the reach of computer
graphics to outside fields. If successful, perhaps others will begin applying
complex computer graphics to new fields as well.

Goals

Generally, we wanted to create a useful and intuitive program for archi-
tects to construct precise catenary systems in a three-dimensional world.
We decided to set small goals to help realize this grand scheme. One goal
was to build was a realistic physical model of the strings so that they
would elegantly respond to hooks, weights, and gravity in real-time. We
hoped to be able to place the hooks and strings in the three-dimensional
world and for them to behave as they would in the real world. We
wanted users of our program to have the ability to explore form through
simulated gravity-based string modelers. The goal was to provide an easy
to use modeling environment solely based on the methodology of placing
strings between either fixed hooks or to each other.

Another goal we had for this project involved the visual graphics and
rendering component. We were concerned with how the strings, hooks,
and weights looked (either realistically or intentionally unrealistically). We
hoped that we would be able to have a mode where the strings were
rendered in different colors depending on how the parts were affected by
external and internal forces, stresses, and strains. We also hoped to have
other modes for the user to toggle between when viewing their string
constructions, or to have skins that would render over the wire frame
structures built up by the strings. We also wanted the user to be able to
flip their design 180 degrees and back so they could get a feel for how it
would look as a building constructed in the physical world.

Colònia Güell model
Hanging and inverted images
of a Gaudi design.

6

On the program construction side, we had goals for our data structure
design, general back-end program design, and physics computations. We
knew that we would need to design intelligent methods for passing
information between the different parts of the program, such as a string
or hook’s placement, length, weight, or the forces applied to them.
General information about the design, such as the number of strings
in the scene, their adjacency, and connectedness was intended to be
available as well.

In order to construct the software for this project within the time con-
straints, we divided the project into different components, each with small
goals we hoped to reach. The first was the construction of an intuitive,
clean, and powerful user interface (UI). The UI design was intended to
focus on the interactions between the program and the user, in particular
with the experience of the user. We wanted to create an intuitive and
powerful way to navigate through the program, to allow the user to
work within the string-gravity spaces, and to provide the user with the
means to save, load, or create new files, and thus new designs. Part
of the navigation design meant structuring the layout of the screen and
all the elements that interface between human input and the program
execution, such as being able to select objects in the scene.

If all went well, we set a goal to user-test our program with some
designers in the architecture department at MIT, in order to get feedback
on the design of the program, the concept behind the work, and the
usefulness of the tool.

Ultimately it was not the goal to just provide a catenary environment but
to create a tool that is easily expandable and adjustable. It is also not
about recreating an accurate, historical simulation of Gaudi’s techniques,
but rather to take his inspiring form-finding techniques and use them as
a starting point for building a modeling tool that operates around the
principles he used.

Interiors and exteriors
Sagrada familia still currently
under construction.

7

Individual Contributions

Each member of the team was responsible for a specific component of the
project. We divided the project into the following chunks:

 Setting up the development environment

 Building the physics simulation/string model

 Building the user interface in Tcl/Tk

 Writing the code that binds the C++ classes with the UI

 Rendering the objects in the scene

 Putting together the written report and presentation

Dan Chak’s main contribution was setting up the development environ-
ment and writing C++ code, in particular the code that glued the user
interface to the string model. Setting up the environment involved creat-
ing our CVS repository, creating the program framework and writing a
makefile, putting all of this into CVS, providing access to the appropriate
machines so each team member could work on the project remotely, and
offering general system support to the team.

The C++ code that Dan wrote includes the classes cdObject, cdString,
cdHook, cdStringHook, cdSkyHook, cdWeight, and cdModel, which create
the framework of the program. He also wrote the Tcl wrappers for the
C++ class methods, as well as various higher level concepts which were
to be invoked from the Tcl/Tk user interface. These functions are in tcl-
bindings.C.

Megan Galbraith’s main contributions involved designing and building the
user interface, designing and formatting the final document and proposal,
setting up the team webpage, and building the slides for the presentation.
She wrote the Tcl/Tk code that places the buttons and menus in the

Weiser- Umemoto model
Explorations of catenary sys-
tems in physical and
digital models (1996).

8

windows and on the screen, and made the icons for the user interface.
Megan also worked on mapping the correct functionality to the interface
objects and setting up the features for users to adjust the parameters of
different objects in the model.

Megan was primarily responsible for the visual design of the program,
selecting the color scheme, and rendering hooks and other design ele-
ments. She worked on ui.tcl, bindings.tcl, tcl-bindings.C and edited other
functions in the hook source code.

Axel Kilian’s main contribution was to research the best approach to mod-
elling the physics of the strings as they fall in gravity and are deformed
by weights, strings, and hooks. He was to then construct a model of
this behavior in C++ code. He wrote, adapted, and integrated the particle-
spring simulation classes into the project.

Axel built several test series, implemented in Java, early in the develop-
ment process. They explored the behavior of the spring-particle system in
determined and undetermined structural situations. He ran several tests
that explored versions of connectivity varying the number of strings that
interconnect in a single point. Three strings in a point in space has a
unique solution and therefore is still statically determined. If there are four
strings there is no one unique solution anymore and one possible solution
can only be found through interactive approximation. This is where a
system like the spring particle system is necessary. Finite element methods
would be perfectly fine to use but pose a much larger workload on the
system.

In the end, many of these components merged and we each assisted
one another with various parts of the work. We all helped to write the
OpenGL code for drawing the objects, we worked together to debug the
program, and chipped in with the writing of the final documents.

Achievements

All in all, we achieved the spirit of the program we wanted to make,
although the functionality is not as far along as we’d hoped it would
be. There were setbacks due to the languages that we used to code
the project because two of the three team members had little to no
experience using either Tcl/Tk, C++, or both. Also, the particle system we
used to model the strings was problematic in the C++ version, and it kept
us from adding additional features and modes to the tool that are more
interesting than the basic behavior we were able to implement.

Java Tests
Screenshots from Axel Kilian’s
three Java physics simulations

9

In terms of being able to interact with and use the system, we achieved
most of our goals, although in two separate paths that the program took.
In one path, many of the manipulation functions for accurately placing
objects manually and for developing 3D models functioned, but the solver
was highly unpredictable. The strings performed what looked like a laser
show across the screen. These problems related to ill-behaved physics, so
we stepped back and rewrote parts of the program. The new iteration
resulted in a program where the solver behaved well, but the 3D place-
ment and manipulation was non-functional. We were unable to get the
two paths working together as we had set goals to do.

The user interface as a whole contains the important methods and func-
tions for placing strings and hooks into the world so that designs can be
built. The canvas of the scene is interactive, and users can point and click
to place objects in the space or to select objects, which we do by compar-
ing distances to the mouse position in the x-y plane. Selecting objects
in a 3D world was a more difficult task than we expected. However,
it is worthwhile because the user can get feedback from the program
about the position of hooks, lengths of strings, and placement of hooks
on strings.

We made small achievements with the physics modeling problem and
getting the solvers and particle methods to behave reasonably. The strings
did not always behave as they should have, but there are elements about
their behavior when working properly that really add to the organic
feeling of the tool. Most notably is when new strings are created and fall
with respect to gravity. To work on this component, Axel created four Java
versions of what the particle system should do under the deformations
of hooks, weights, and strings. These versions were difficult to success-
fully realize in the C++ interactive version of the program. However, the
conceptual work was done and as a result we have several very nice
applets that show this in concept.

We reached the goal of providing the necessary infrastructure for the
program and setting up the interactivity. We also reached the goal of
creating a fully working prototype that allows for all the fundamental
modes of modeling the catenary systems. The main hurdle was the
combination of interactive user input with the constantly changing spring
particle model.

Finally, it was an achievement to set up a development environment for
three programmers with different backgrounds to work together on a
single project. We were concerned about getting in each other’s way or
overwriting code, but wanted to be able to work on the project without

10

needing too much interaction with the entire group to merge program
pieces and keep everyone’s code in sync. Using CVS was a wise choice for
us, particularly when we would break things that previously worked and
we wanted to step back to older versions to see what went wrong. Dan
was successful in building the interface between the C++ code and the
Tcl/Tk code so that Megan and Axel did not need to concern themselves
with the behavior of each others component when writing their code
for their parts.

The following is a description of the system we built for the CADenary
design program.

Program Data Model

CADenary’s data model consists of hooks, strings, and weights. There
are two types of hooks, SkyHooks and StringHooks. A SkyHook can
be placed anywhere in the work area, whereas a StringHook hangs on
a string. Strings can hang between any two hooks in the work area.
Weights can be attached to StringHooks that are first attached to strings.

SkyHooks, StringHooks, Strings, and Weights are all implemented as C++
classes. Another C++ class, Model, is a container class for all of these
objects, and represents the entire work area. This can be seen in the
Object Model Diagram above in the box labeled “Data Model.”

Some functions were needed in order to build the catenary model and
use the program well. For instance, we needed to be able to place hooks
both in the sky and on strings. We needed to be able to select strings and
hooks by clicking on them so that parameters could be retrieved or strings
could be attached. We also needed to look at the model in several modes,
by viewing it in the x-y plane with the correct orientation, by viewing it
in the x-y plane but turned 180 degrees, or by panning around it in the
three-dimensional space.

We implemented a method to find the closest object to the mouse click.
Whenever the mouse moves, a function is called that finds the closest

cdObject

cdForce

Vect

LineSegment

a, b

cdHook

cdStringHook cdSkyHook cdStringcdWeight

cdModel

pos cdSpring

cdForceEntry

cdParticle

cdParticleEntry

a,b

cdParticleSystem cdParticleBucket

Data Model Physics SimulationGeometry

11

object to the mouse pointer for each type of object. For hooks and
weights, this is trivial. The distance from the mouse pointer to each hook
or weight is calculated, and the smallest distance is chosen. Strings are
slightly more complicated. The distance from the mouse pointer to each
segment of each string must be calculated. Again, the string which is the
smallest distance away is chosen as the active object.

In addition to navigation and the usability of the program, we needed to
construct a model for representing the strings so they behave realistically
in real time. The strings are placed as segments around the space, and
each segment is calculated either from hook to hook, as in the Data
Model representation, or from particle to particle, as in the Physics Model
representation. These models do not necessarily correspond or behave
similarly, and we have struggled to decide the best way to relate these
two very related representations. One possibility is to abandon the Data
Model representation of strings (connections from hook to hook) and
use the Physics Model representation for both computation and user
interaction. Another possibility is to make each StringHook correspond to
a particle in the Physics Model. This is what we are attempting to do.

Tcl/Tk User Interface

The Tcl/Tk user interface sits on top of the C++ Data Model. This part
of the program represents the menu bar, canvas, and the toolbox. All the
classes represented by the Data Model have Tcl function wrappers which
are called by the Tcl program in an event-driven manner based on the
user’s actions. The Tcl program passes data to the C++ program when the
user selects a tool or menu option, clicks in the work space, or simply
moves the mouse around the screen.

The Tcl/Tk user interface provides several options to the user:

 Create a new SkyHook

 Create a new StringHook

 Create a new String

 Select an object

 Retrieve/modify the parameters of an object

 Rotate the scene 180 degrees to view structures

 Real time graphics window

 Interactivity

Most of these options can be accessed through either the menubar across
the top of the main window, or by click on the corresponding button in
the floating toolbox. This sets the program into the correct mode and lets

Debugging
Screenshots from a version
with a misbehaving physics
simulation.

12

the user perform their duties until a new option is chosen. For instance, if
the user is interested in setting the parameters of an object by hand rather
than relying on the inaccuracies of the mouse, they may select the object
then modify the parameters in the toolbox window.

Each object has certain parameters than can be retrieved by the user and
potentially modified. Selecting or placing a SkyHook lets the user see the
x, y, or z coordinate of the hook in space, whereas selecting or placing a
StringHook lets the user know how far down a string the hook is placed.
If the user selects or places a String, the Tcl/Tk interface informs the user
of the length of the string. Initially, the length is one and a half times the
distance between the two hooks. Each string is divided into thirty particles
that have individual forces acting upon them, and StringHooks can be
placed along these particles.

All icons used for the toolbox buttons are originals. They were made for
this project using Adobe Photoshop. The colors in the background and
menus are neutral, earthy tones in order to be pleasing to the user’s
eyes and to reflect the organic properties of the strings used to build
the catenary models. The renderings of the hooks and strings were
kept very minimal for several reasons. First, we agreed that a simple,
elegant interface would make the tool more effective. Second, we wanted
to ensure that the program ran smoothly in real-time without being
bogged down with complicated renderings that distract from the form
in construction.

Physics Simulation

We chose a Spring-Particle system for simulating the physics-based string
behavior. This choice was based on our need for a robust, interactive
simulation method that would allow us to interact with the string model
as it is simulated. The Spring-Particle model in itself does not guarantee
robustness - its behavior for larger numbers of random combinations of
springs and particle chains depends in a large part on the solver used
in the system. We are using the Runge-Kutta solver, an explicit solver. It
produces reasonably robust solutions for most cases.

It is susceptible to breaking when the scale of strings change or excessive
stress is introduced into the springs through stretching the string. Another
shortcoming of the current Spring-Particle System is the lack of conserva-
tion of length of the string. The system becomes very unstable if the
stiffness parameter of the spring is set beyond 1. At the highest stable
setting the string experiences approximately a stretch factor of 1.5 times
of the at rest length which is far more then a common physical string
would exhibit. Currently we do not place emphasis on the conservation
of the length of a string but rather interact with the system based on
visual feedback. But this problem has to be addressed in further iterations
of the project.

UI Toolbox
Screenshots of an early version
of the user interface toolbox.
Buttons let users place
SkyHooks, StringHooks, and
Strings, among other things.

13

The Particle Spring model is implemented with the use of the following
classes. The particle functionality is handled in cdParticle.C,
cdParticleBucket.C, and cdParticleEntry.C. The Spring implementations
occur in cdForce.C, cdSpring.C, and cdForceEntry.C. The
cdParticleSystem.C class controls how forces and Particles relate to each
other. In order to create a string, the classes cdParticle.C and cdSpring.C
are instantiated to form a chain of Particles, interconnected by springs.

The parameters of a Spring are the rest length, the length when the spring
is not in tension, and the damping factor, which is at 0 in our case since
it has the tendency to spin the model out of control. Particles have a
mass parameter, a location, and know whether they are confined or
free to move about. The end hooks of strings and the end particles are
fixed to the hook positions. A special case is when a string is attached
to a StringHook. StringHooks follow the movement of the strings they
are attached to. cdParticleSystem.C deals with the calls that update the
ParticleSystem. It invokes a Runge-Kutta solver to solve for all the forces
involved in the update cycle.

The program structure can be seen in the Object Model Diagram in the
box labeled “Physics Simulation.”

Lessons Learned

One of our original motivations for this project was the statement that
designers are limited by their tools. If your CAD program can only draw
right angles, you are going to make a lot of rectangular structures. What
we thought in the beginning couldn’t have been more true. Not only was
it easy to quickly figure out what you could do with CADenary to make a
structure, but it was also easy to figure out what you couldn’t do. Even if a
certain type of interaction would get you in trouble because of the physics
simulation, this sort of limitation would present itself plainly and you could
design right around it. In about twenty minutes, Dan created a structure
that looked a lot like the Eiffel tower (but would be self supporting!) using
CADenary, even in it’s extremely nascent stages.

While C++ might be the best language to use in actual development of a
computationally intensive, complex program that uses 3D graphics, it may
not have been the right choice for proof-of-concept work such as what
we were aiming to accomplish for this class project. Swing and other
Java APIs can be just as difficult to pick up as Tcl/Tk or the C++ STL, but
Java may have been a better choice in the end because of the experience
of the people in the group. Many features in the user interface and the

14

construction of the physics model would have been built much quicker
and behaved better had they been done in Java. Much of our lost time
was a direct result of Axel needing to grow more comfortable writing
code in C++, and Megan needing to learn Tcl/Tk. Axel and Megan both
learned about developing complex program structures in a collaborative
setting in C++ and Tcl/Tk, which they did not have prior experience in.

Using one unified language for all aspects of the program (rather than the
Tcl/Tk and C++ split we chose) may have made development smoother
as well as more rapid. One of the original reasons for choosing C++ was
to have access to the openNurbs library so that we could build skins,
surfaces, and save the models for use in 3D printers . This was never
realized simply because we didn’t make it that far.

Another lesson we learned was that it would have been more effective
if we’d been able to develop the code on a variety of platforms rather
than only Linux.

Investigating the pros and cons of physical simulation engines was an
interesting task because we had not previously looked in depth into this
field. One lesson learned was the importance of choosing the appropriate
solver for the task at hand based on speed requirements, robustness and
required precision of the calculations. An important part of simulations is
to chose the appropriate criteria in order for the results to be meaningful
within the chosen setting.

Deliverables

We are able to provide the following deliverables to the class upon the
completion of this project.

 A working CADenary program with basic features

 Three Java test applets illustrating physics concepts

 A collection of short movies

 Source code for the project

 Final Project Paper online in PDF form

 Final Presentation

15

Acknowledgements

We would like to acknowledge the following people for their help and
support while we worked on this project, whether they knew they were
providing it or not.

Prof. John Ochsendorf, Axel’s structure professor in Building Technology,
for meeting with him to talk conceptually about the project, in particular
about potential problems with solvers.

The 6.837 teaching staff, in particular Fredo Durand, who met with Axel,
Seth Teller, for sending an encouraging email when his colleague showed
interest in the project, and Addy Ngan for meeting with us once a week,
for admitting he didn’t have a clue what we were talking about when we
proposed our idea, and for not getting too discouraged when we didn’t
stick to our timeline of progress.

Cat Foo for letting us invade her home when the conference room down
the hall was full, for making fresh soymilk for Megan in the mornings, and
for providing Dan and Megan with comic relief during the semester.

The Aesthetics + Computation Group, in particular Simon Greenwold,
Tom White, and Ben Fry, for their little snippets of knowledge and Prof.
John Maeda, who trembled when he called us the “Power Team.”

Nicola Stafford, who didn’t get mad when Megan turned down tickets for
Guns ‘N Roses so she could attend a meeting with her group.

Lor sim augait,se tat et, quis accummy nulla facin ut autat lutpat adigna
faccum quam qui tem dit del et ut laoreetum dolore tat. Ut landiam,
sequis aciduis acip et lut vulputpat.

Andrew Boardman and the Athena hotline for getting us music on the
IBM linux machines in the building 66 cluster (but not Seth Gilbert, who
wouldn’t let us install Athena-Linux in the Sidney-Pacific cluster. Grr).

16

Bibliography

Faure, Francois. Fast iterative refinement of articulated solid dynamics.
To appear in IEEE TVCG, 1999. http://w3imagis.imag.fr/Membres/
Francois.Faure/

Jakobsen, Thomas. Advanced Character Physics. http://www.ioi.dk/
Homepages/thomasj/publications/gdc2001.htm. IO Interactive, Denmark.
2001.

Meltzer, Jonathan D. Gaudi Central. http://www.op.net/~jmeltzer/Gaudi/
colonias.html. March 18, 1998.

Ottos, Frei. Institute for Lightweight Structure and Construction, ILEK.
http://www.uni-stuttgart.de/ilek/Fotoarchiv/Fotoarchiv.html

Smith, Jeffrey, Hodgins, Jessica K., Oppenheim, Irving, Witkin, Andrew.
Creating Models of Truss Structures With Optimization, Proceedings of
Siggraph 2002. ACM Press, New York. 2002. pp. 295-301.

Solé, Eduard. The Crypt of the C hurch of Colònia Güell (1898-1916).
http://www.gaudiclub.com/ingles/i_vida/colonia.html. 2002.

Weisstein, Eric. Catenary. World of Mathematics.
http://mathworld.wolfram.com/Catenary.html. CRC Press LLC. Wolfram
Research, Inc. 1999.

